
Adaptive Methods for Growing Electronic Circuits on an
Imperfect Synthetic Matrix

N. J. Macias+ and L. J. K. Durbeck*

Cell Matrix Corporation

RUNNING HEADLINE: Adaptive Circuit Growth on an Imperfect Matrix
KEYWORDS: Self Organizing, Cell Matrix, Adaptive, Nanotechnology, Fault
Tolerance

ABSTRACT

Living systems can adapt to injuries and even heal themselves, an ability desirable also in
synthetic systems. A method is presented for dynamically adapting the construction of an
electronic circuit to hardware defects by formulating the process as a series of
interactions between identical but specialized structures called supercells. The circuit
components, including wires, can occupy any place in the hardware that has been
determined to be free of defects. The circuit specification is reduced to a connected
graph, with no positional information, and provided as a code repeated in each supercell.
Using the code, supercells differentiate into circuit components in a late stage of the
process, with with highly adaptable physical location and organization; supercells also
form the wires between circuit components. The structure and function of the system at
three major levels is presented, the lowest cellular level, the supercell, and the target
circuit level. Adaptation of circuit construction to defective hardware was observed for
this method. Results obtained from this development process on simulated and real
hardware with a variety of defect types and defect patterns are presented, as well as
higher level simulations of the algorithm and its response to a wider range of defect
patterns, amounts of hardware, and hardware to fault ratios.

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

1. INTRODUCTION

There has been ongoing effort by researchers to invest electronic circuits and electronic
systems with the ability to survive physical or electrical damage to their electronic
innards. Electronic circuits are in widespread use; however, nearly all circuits in use
today cease to function properly when they incur any sort of damage. In many cases the
tradeoffs between system size and complexity will continue to be such that it is cheaper
to create a compact, nonrobust implementation of an electronic component and then
replace it when it fails; still, there are cases where it is too expensive to access the system
– such as a system on a probe launched into space – as well as cases where it is too
expensive to communicate with the system to remotely diagnose its failure state and
repair it – such as a system sent into deep space, beyond the casting limits of rich
communication links. And it appears that as the trend toward ever more complex systems
continues, it is also becoming desirable to design the subcomponents of complex systems
such that they diagnose and repair themselves, simply to reduce the complexity of the
larger system that is controlling and coordinating everything, and also to reduce the
amount of time the system spends running diagnostics (by having the subcomponent self-
diagnostics run in parallel).

The great majority of digital electronic circuits in use today are implemented in a
compact, fairly direct representation of some kind. The most compact form in common
use is representation of each logic gate using transistors that are created out of
semiconducting materials, and wires built of metal, using a technique such as custom
ASIC. This method is extremely compact, but any error in the creation of the transistors
or wires is generally fatal, and the electronic circuit will generally fail. A technique such
as custom ASIC can be viewed as a literal but imperfect transcription of the circuit
design, or definition. However, the abilities to detect, diagnose, and overcome defects
can be incorporated into the design of the circuit and its operation.

There are electronic circuits with structures that permit a good degree of tolerance to
custom ASIC fabrication errors. Programmable logic devices are a good option, because
rather than implementing the desired electronic circuit directly in silicon, a more general
circuit that contains many programmable logic elements is built in silicon, and that circuit
is then programmed – a step completely separate from fabrication – to implement the
desired circuit. Researchers have been developing techniques and tools to alter the
configuration step so that it first looks for defective logic blocks, and then avoids using
them in the creation of the desired circuit.

Our approach falls into this category. It is illustrated in Figure 1.1 and 1.2. In silicon we
construct a multidimensional array of identical programmable elements called cells. We
later program that array of cells. In this paper we describe a technique for programming
that array so that the first thing that each region of programmed hardware does is look at
the regions immediately surrounding it and find any faults. If it finds faults, it walls itself
off from any defective region of hardware around it so that the faults cannot spread to
itself. After that, it sends out signals to neighboring hardware, and the neighbors do the

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

same, forming a fully connected communication network. Using that communication
network, the regions of hardware send out signals to tell the other regions what piece of
the desired circuit they have elected to implement. They follow a prescribed set of
behaviors so that this step is well-coordinated, and only one copy of each circuit
component is built. They also keep those parts of the communication network that mimic
the wires between the components of the desired electronic circuit. They then signal to
the external world that they are done setting up the hardware, and from that point in time,
they perform the function of the desired circuit.

What is unusual about this approach is that it permits the hardware to test and set up
itself. It does this by introducing an extra step between fabrication of the hardware and
programming the hardware to implement the circuit – namely, programming the
hardware with an intermediate structure and function whose main purpose is to allow
regions of hardware to, separately, locally, and in parallel, perform hardware tests, and
then to allow regions of hardware to communicate and act collectively to set up the
desired circuit.

Benefits to be had from this overall approach are several. The result is a piece of
hardware that contains a robust version of the digital electronic circuit – the electronic
circuit works perfectly even if the hardware contains a lot of defects. The lowest level of
the system, the physical hardware constructed from transistors or switches, is unusually
robust in that it is comprised solely of identical components that are simple, small, and
interchangeable. This provides a high degree of redundancy at the lowest level of the
system, redundancy that can permit many options for the placement and interconnection
paths between the components of the desired circuit. Even the wires, or signal routing, of
the desired circuit are programmed in, and can therefore be programmed in after
diagnosis of defects.

The question we were most interested in asking and answering was whether and how to
introduce higher order behavior into the system without losing features of the physical
cell level that we think are critical. The hardware-level cells of a Cell Matrix are
extremely simple electronic components, and they have several features that permit them
to perform simple electronic functions and to communicate with neighboring cells, either
to exchange information, or to modify each other's simple behavior. Features we were
interested in bringing along to the higher level of the system include the low degree of
inherent individuality of cells, the high degree of fault isolation due to their physical
connections only to nearest neighbors, and cell self-duality, which is the ability for all
cells to interpret incoming information as data, or as code to change its internal behavior,
and thus to act either as a subject or an object of reprogramming (programmer or target).
More complex behavior is achieved by programming a group of adjacent cells to
implement a larger entity. It was our object to design a multicellular program that
exhibited higher order behaviors but was still able to do all the things a single cell can do.

The supercell described here is such a multicellular program, and its higher order
behaviors include the ability to interrogate a neighboring region for a wide variety of
faulty behaviors, the ability to create new supercells, the ability to create communication

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

Figure 1.1
Laying out an Electronic Circuit on Defective Hardware

The schematic diagram on the left specifies the design of a simple circuit. Extremely
compact hardware implementations of this circuit are possible using custom ASIC or
programmable logic devices; however, such representations are not at all robust to
hardware defects or failures. The diagram on the right shows how the circuit can be

implemented on top of a large array of Cell Matrix cells that has been configured as a
set of supercells. The circuit coexists on the hardware along with defective cells, but it

uses no defective cells in its implementation, so that it can function perfectly. The
technique can also be repeated on the same piece of hardware to counter new

defects or damage: it will lay the circuit out differently so that it continues to function
perfectly.

+B

C

A D
Q

+O

+ +

D Q

B

C

O

A

+B

C

A D
Q

+O

Figure 1.2
Basic Approach

The three main stages of the approach are illustrated left to right. The process begins
with a piece of Cell Matrix hardware containing an arbitrary number of cells, shown as

small grey boxes, and a random distribution of defects, shown as black boxes. A
sequence of configurations strings provides the hardware with both static, structural
configuration information, and dynamically interpreted instructions. As shown in the

middle graphic, this sequence tiles the hardware with a repeated configuration called
a supercell, which occupies a 270 cell-square region. In regions where defects are

detected, no supercells are created, as shown by black boxes. After the matrix is tiled
with supercells, the supercells form a communication network and then differentiate

into the various components of the desired final circuit. They also establish permanent
links that correspond with the wires in the desired circuit. The rightmost drawing

shows the final result, a network of supercells that implements a small circuit. The
circuit is automatically laid out on the damaged hardware, and able to run perfectly

despite the presence of defective cells.

networks within the set of supercells, the ability to query one another and cooperatively
build up maps or routes to tell one supercell where another supercell is located, the
ability to differentiate into circuit elements, the incorporation of state machines and the
ability to form collective state machines, providing them a specific temporal behavior of
performing a specific sequence of operations. A Cell Matrix tiled with supercells is
illustrated in Figure 1.3.

Supercells retain the desired characteristics of single cells. All supercells start off
identical, providing the higher level system with a low degree of individuality of its
components. The tiling of supercells achieves the subject/object relationship that cells
have: supercells create other supercells, and they do so by passing the supercell definition
they receive as data to the target region. Faults are contained at the same granularity as
supercells, and this is achieved by each of the supercells adjacent to a region containing a
defect turning on their guard walls.

BACKGROUND

Digital circuitry is traditionally extremely fault sensitive. Typically, every transistor
within a circuit plays a critical role, and, should a single transistor fail, the entire system
will likely fail to some degree. A few exceptions exist. For example, high-density
memory contains redundant bits that are used to detect errors in the other bits, and can
also be used to correct them (Vanstone and van Oorschot, 1989). At a larger scale, some
systems achieve fault tolerance via component-level redundancy. For example, the Space
Shuttle currently employs five copies of its on-board computer systems (NASDA 1996).
In such a system, critical elements are replicated two or more times, so that should an
element fail, a replacement can be switched in to take its place. These systems are
extremely reliable in the case of single fault events, but are limited in the severity of
damage they can incur, depending on how many redundant copies of critical elements are
available. Generally, the more redundancy a system has available, the greater the degree
of damage it can sustain.

A key factor that limits the number of available redundant elements is simply the size and
complexity of those elements. If a system contains a large number of critical elements,
and it keeps three copies of each, this triples the size of the system. Yet the fault
detection system could still be disabled by just one fault, and the entire system could
malfunction following just two faults, should they occur in any two copies of a single
element.

Clearly, this problem is compounded if the elements in question are large: it becomes
impractical to maintain, say , 1000 copies for the sake of redundancy.

If, however, the elements of a system are extremely simple and highly interchangeable,
then you may be able to keep a huge number of redundant copies within your system
without significantly increasing the size of the system. For example, a system containing
1,000 elements that are identical could theoretically have 1,000 spare copies available by

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

Figure 1.3
Defective Matrix Containing Supercells, Increased Detail

The middle drawing from Figure 1.2 is shown on the left, with the contents of the non-
black boxes shown in greater detail on the right. Black boxes are regions containing

faulty cells; white boxes are supercells. Black boxes: in each region where a faulty cell
is detected, the region is not set up; further, the regions around it guard themselves
from it, effectively rendering it as a hole in the matrix. Supercells: Each of the non-

black boxes on the left represents a region that has been set up to contain a
supercell, and on the right, the structure and contents of a supercell are displayed in
greater detail. A supercell uses up a region containing 270 x 270 Cell Matrix cells;

each cell in the region is set up, via configuration of its internal memory, to implement
some small part of the functions needed for the supercell to operate.

simply doubling the size of the system, since any of those 1,000 spare copies could be
used to replace any of the 1,000 identical system elements.

PROGRAMMABLE LOGIC

This observation leads to some promising work in the field of Programmable Logic
(OptiMagic 1997). In a programmable logic system, the underlying hardware of the
system does not directly implement the system's functional behavior. Rather, the
underlying hardware is a substrate whose reconfigurable elements can be configured to
perform certain specific tasks. Thus, there is not a particular piece of hardware which,
say, acts as an adder. Instead, a set of reconfigurable elements is configured to act as an
adder. The advantage of this approach is that, should the elements associated with that
adder become damaged, the role of the adder can simply be transferred to another set of
reconfigurable elements. Thus, the system has extremely high redundancy, on the order
of the number of unused reconfigurable elements in the system. The classic example of
this approach is the Teramac work of Hewlett-Packard Laboratories (Amerson et al.,
1995; Heath et al., 1998). This reconfigurable-logic based computing system is first
analyzed to locate defective components, that are then avoided by the compiler when
implementing a design on the system. The result is a highly fault-tolerant system that can
function despite having numerous defects.

Despite the success of programmable logic-based fault tolerant systems, many such
systems share the common attribute of being externally controlled. In other words, an
outside system must analyze the hardware, determine the location of the faulty elements,
decide how to implement the target circuit using the undamaged hardware, and then
perform the configuration of the substrate (Culbertson et al., 1996). Such a setup, using
an external analysis and control system, may work well in the laboratory. However, it has
serious shortcomings if, for example, your analysis system is sitting on earth, while your
target circuit is sitting on the surface of Pluto. In such a case, the analysis and re-
configuration of the target circuit must be done across 3.6 billion miles of space. The
communication time alone (over 10 hours round-trip at the speed of light) may make this
externally-controlled system impractical.

In such cases where autonomous operation is required, a biologically-inspired approach
may be more appropriate (Mange 2000b; Bradley 2000; Ortega-Sanchez 2000; Prodan
2001; Stauffer 2001; POE 2002). While some of these approaches exhibit a high degree
of autonomous fault tolerance, many of them use specialized hardware, and many are
limited in the patterns of faults they can tolerate. For example, some of these approaches,
such as row and column replacement, make assumptions about how many faults will
occur in a certain region (row or column), and thus may have difficulty recovering from a
fault in every row or column, even if there is still theoretically enough undamaged
hardware to re-implement a working circuit. Others require some degree of cooperation
from failed elements, for example, a failed element may be required to route signals from
one side of itself to another. In the present work, a very general-purpose platform is
employed, without any modification to its underlying architecture. The present work
allows a wide-range of fault patterns; as long as a sufficiently large connected set of cells

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

is available, the circuit will be successfully rebuilt despite faults. And, very few
assumptions are made regarding cooperation from failed system elements; the behavior
of just the correctly-functioning elements is sufficient to rebuild a failed circuit. Guard
Walls, which are used to isolate faulty hardware regions, are activated in non-faulty
supercells only. No part of a failed supercell participates in the construction or
functioning of the final target circuit. Signals are never routed through faulty regions or
failed supercells. Note that in exchange for these additional features, the present work
consumes a large amount of hardware, creating an extremely complex atomic unit.

More general background may be found in Jon von Neumann's work on self-replicating
automata (von Neumann 1966) and in Burks' work on growing automata (Burks 1961).

THE CELL MATRIX

The reconfigurable platform used in this research is called the Cell MatrixTM. The Cell
Matrix is an extremely general purpose reconfigurable platform, with capabilities that go
beyond those of other reconfigurable platforms (Macias 1999; Durbeck 2001a). Cell
Matrices also possess a number of features conducive to this type of fault tolerant work:
• the architecture of a Cell Matrix is extremely simple;
• the architecture is perfectly scalable, as elements are connected only to immediately

adjacent neighbors in a perfectly regular tiling;
• all of the matrix's elements are identical to each other, thus easing the manufacturing

burden;
• the architecture possesses a natural fault isolation feature, in that defects in one region

of the matrix generally have no effect beyond a very small perimeter around the defect
(Durbeck 2002); and

• all of the elements in a Cell Matrix are interchangeable.

Cell Matrices have been studied extensively, both in terms of their inherent properties
and their suitability to a variety of applications (Cell Matrix Corporation 1999). Much
work has been done in understanding how to manipulate and control Cell Matrices. Much
of this work has been done using simulators (Cell Matrix Corporation 2000), though
some work has also been performed on silicon prototypes. There is however nothing
inherently silicon-based or electronic about a Cell Matrix, and future implementations are
envisioned in whatever manufacturing technologies are best suited to its unique
characteristics (Durbeck 2001b). Currently, there are a number of development tools
being used to implement circuitry on the Cell Matrix, including a graphical layout tool
(Cell Matrix Corporation 2001). Other tools and development environments are currently
under development.

The present work may be viewed as an example of Embryonics (Mange 2000b; Jackson
2001; Mange 2000a). However, it was not intended to be an embryonics project per se,
nor was it intended as an example of bio-inspired computing. Rather, it was intended to
show the more general technique of creating larger-scale cells (“Supercells”) from
simpler building blocks (Cell Matrix cells), in a way that enhances the functionality of

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

the underlying cells without disturbing their essential critical characteristics.

2. APPROACH

CELL MATRIX BACKGROUD

The atomic unit of a Cell Matrix, called a cell, is a simple information processing unit. A
Cell Matrix consists of a collection of cells, arranged in a fixed, regular tiling, with
adjacent cells connected to each other according to a fixed, pre-defined interconnection
scheme. Each cell receives information from its fixed set of neighboring cells, along a set
of “D” inputs, processes that information, and generates new information which is sent
back to those neighbors on a set of “D” outputs. The manner in which incoming
information is processed by a cell is determined by a small program located inside that
cell. A cell's program can direct the cell to perform any logical operation on the incoming
data. Thus, a cell can produce simple logical combinations of information (AND, NOR,
etc.), simple arithmetic combinations (ADD, SUB), decision operations (IF A THEN B
ELSE C), and so on. A cell can also be used simply to pass information from a second
cell to a third. Figure 2.1 illustrates sample configurations of a single cell. Figure 2.2
illustrates a 2-D tiling of cells in a Cell Matrix.

The behavior of the Cell Matrix is determined solely by the configuration of its
constituent cells. Since the interconnection among cells is fixed throughout the matrix, it
is only the collective programming of each individual cell that determines the behavior of
the entire matrix. By appropriately configuring a set of cells, they can be made to act in
concert to perform various higher-level functions, just as in today's silicon circuitry,
individual transistors are combined to create integrated circuits with specific desired
functions. Figure 2.3 shows a set of four cells acting together to implement a four-bit
adder. Each cell acts as a simple one-bit full adder, and these are combined in the
standard way to implement a ripple-carry adder.

Therefore, the Cell Matrix is capable of implementing essentially any computational
circuit, simply by configuring cells in an appropriate fashion. Such a circuit performs
data processing by receiving incoming data, processing it via the collection of cells, and
generating outputs. However, the Cell Matrix has additional capabilities beyond those of
traditional data processing, discussed next.

SELF-DUALITY

Because the Cell Matrix is composed only of cells, without any additional system
components, its behavior derives entirely from the characteristics of its cells. One of the
most important features of a cell is its ability to interpret incoming information in not one
but two possible ways: either as code or as data. This is achieved by having each cell
operate in one of two modes: D-mode and C-mode. When a cell is in D-mode, it

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

DC DC

DC DC

D

D
C

C
D

D
C

C

AND

Figure 2.1
Sample Configurations of a Cell

The box in the middle of a cell represents its internal program.
A single cell can be configured as, for example,

an AND gate (top left), a one-bit adder (bottom), or
even a simple wire (top right).

DC DC

DC DC

D

D
C

C
D

D
C

C

SUM

Cin

A

B S

Cout

DC DC

DC DC

D

D
C

C
D

D
C

C

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

Figure 2.2
Sample Two-Dimensional Tiling of

Cell Matrix Cells
Each of the 16 rectangles represents a single cell.
This tiling is independent of the size of the matrix.

If four of the above 4x4 matrices were tiled in a 2x2 pattern,
the result would be an 8x8 matrix.

Each cell contains a 128-bit memory, organized as a 128-bit truth table.
This truth table maps each of a cell's 16 possible 4-bit D-input combinations to

the cell's 8 output values (4 D and 4 C).

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

16x8
Truth
Table

DC DC

DC DC

D

D
C

C
D

D
C

C

ADD

Cin

A0

B0 S0

DC DC

DC DC

D

D
C

C
D

D
C

C

ADD

A1

B1 S1

DC DC

DC DC

D

D
C

C
D

D
C

C

ADD

A3

B3 S3

DC DC

DC DC

D

D
C

C
D

D
C

C

ADD

A2

B2 S2

Cout

Figure 2.3
Four cells acting together to implement a four-bit adder

Cin is the initial carry in. Circuit adds
[A3 A2 A1 A0] and [B3 B2 B1 B0] and produces

[S3 S2 S1 S0] and final Carry out.

interprets incoming bits as data, and processes those bits with its internal program. When
a cell is in C-mode, it instead interprets incoming bits as code, using them to rewrite its
internal program. The mode of a cell is determined by its C inputs: if any C inputs are set
to 1, then the cell is in C-mode; otherwise, the cell is in D-mode. Therefore, a cell's mode
is determined by its neighbors. Figure 2.4 illustrates this difference between D-mode and
C-mode.

The ability of a cell to interpret an incoming stream of bits in one of two ways is referred
to as self-duality. Figure 2.5 illustrates this notion in a sequence of three steps. In the
first step, at the top of the figure, three cells, X Y and Z, are each operating in D-mode,
and thus are exchanging data with each other. Their internal programs (labeled “16x8
Truth Table”) are static. In the second step of the sequence (middle of Figure 8), cell X is
asserting a 1 to one of cell Y's C inputs, thereby placing cell Y into C-mode. In this
configuration, X's D output is being used to modify Y's internal program. X could also
read Y's prior program via Y's D output. In the third step of the sequence (bottom of
page), cell Y has returned to D-mode, and is now configuring cell Z by asserting a 1 to
one of Z's C inputs. Thus, Y may alternately play the role of being an object (second
step) or a subject (third step) of a configuration operation. This interchangeability is the
feature to which “self-duality” refers.

Self-duality is a powerful cell-level feature that allows the creation of autonomous,
dynamic systems within the Cell Matrix, including systems that self-replicate or
otherwise change and grow while running (Macias 1999). In the present work, self-
duality is used in many ways, but most notably to allow structures (supercells) to be
created, and then subsequently used to create further supercells. This dual-operation of
supercells is key to minimizing external intervention in the fault testing and circuit
assembly phases of the system. Rather than relying on external mechanisms, the
necessary mechanisms are built within the system itself, using supercells to both
implement the mechanisms themselves, and to create the supercells that are used to
implement the mechanisms. The task of fault avoidance then becomes one of ensuring
that supercells occupy only fault-free regions of the hardware.

Despite having the important property of self-duality, cells are actually very fine-grained
atomic units, and by themselves are capable of performing only very simple operations.
This simplicity of a single cell is a deliberate feature, and has important implications for
manufacturing (Durbeck 2001b). However, it has the consequence that even most simple
applications require a large number of cells, all working together to implement a higher-
order function.

PASSAGE FROM CELLS TO SUPERCELLS

It is often difficult to design complex systems directly from the simplest, lowest-level
atomic units. Suppose a complex system is to be implemented on the Cell Matrix. Rather
than directly designing it from individual cells (which, remember, are extremely simple),
one may instead first implement larger, more powerful atomic units, called supercells.
The final complex system is then designed using supercells as an atomic unit. This may

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

DC DC

DC DC

D

D
C

C
D

D
C

1
128-Bit
Memory
(16x8)

DC DC

DC DC

D

D
C

C
D

D
C

C

01101101
11010110
00101100

...

D-Mode:
Cells Exchange DATA

C-Mode:
Cells Exchange CODE

DC DC

DC DC

D

D
C

C
D

D
C

0
128-Bit
Memory
(16x8)

DC DC

DC DC

D

D
C

C
D

D
C

C

128-Bit
Memory
(16x8)

Figure 2.4
D- and C-mode behavior of a cell

If a cell's C inputs are all 0, then the cell is in D-mode, and incoming
D inputs are processed by the cell's program.

If any C inputs are 1, then the cell is in C-mode, and incoming
D inputs are used to re-write the cell's program.
The cell's D outputs present the old program.

Figure 2.5
Sequence Illustrating Self-Duality in Cells

In the top figure, all three cells are in D-mode.
In the middle figure, cell X has placed cell Y into C-mode,

by setting Y's Western C input to 1.
Cell Y is thus being reconfigured, i.e., it's internal program is being changed.

In the bottom figure, cell Y is again in D-mode, and is now itself changing
cell Z's configuration, having placed cell Z into C-mode.

This interchangability of roles, from object to subject, is a key
to creating autonomous, dynamic systems on a Cell Matrix.

X

D
0

16x8
Truth
Table

D

D
C

C
D

D
C

C
D

D
C

C

16x8
Truth
Table

Y Z

16x8
Truth
Table

Y is in D Mode

X

D
1

16x8
Truth
Table

D

D
C

C
D

D
C

C
D

D
C

C

16x8
Truth
Table

Y Z

0110
1001...

Y is in C Mode

X

D
0

16x8
Truth
Table

D

D
C

C
D

D
C

1
D

D
C

C

16x8
Truth
Table

Y Z

1110
0011...

Z is in C Mode

greatly simplify the design process, particularly in cases where the design of the system
is being performed by an automated system, as opposed to a human designer.

What characteristics should a supercell possess? Having noted the importance of self-
duality at the single-cell level, it is reasonable to believe that self-duality may also be
important at the supercell level. One goal of this work was thus to design a supercell
which possesses an analog of a cell's dual-interpretation of incoming information. Before
describing this supercell-level self-duality, we must first discuss how supercells come to
be.

The only mechanism for changing a cell's internal program is to first place the cell in C-
mode, then send a program into the cell, and then place the cell in D-mode. For cells
whose inputs are available from outside the Cell Matrix, this is simple to accomplish.
Most cells, however, have all of their inputs connected to other cells within the matrix,
and thus those inputs cannot directly be accessed from outside the matrix. To change the
programming of such cells, one must use neighboring cells that do have access to the
target cell's inputs. Therefore, the process of configuring a cell generally consists of a
series of steps, during which cells are first themselves configured, and subsequently used
to configure other cells. This sequence of operations relies heavily upon the self-duality
of cells (Macias 2001).

While the above technique is suitable for configuring a relatively small number of cells,
it may be impractical for extremely large matrices, say, ones containing a mole (6.02 x
1023) of cells. For such large systems, configuration of cells one at a time is impractical.
Even at a configuration time of one picosecond per cell, configuring 6.02 x 1023 cells
would require over 19,000 years.

If, instead, one configures many regions in parallel, configuration times may be made to
vary as the square root (for a 2-D matrix) or cube root (for a 3-D matrix) of the number of
cells. In the above example, rather than requiring 19,000 years, the resulting
configuration times would be 0.78 seconds in 2-D and 84 microseconds in 3-D.

There is no mechanism inherent in a Cell Matrix for configuring cells in parallel. It is
possible, however, to create structures within the Cell Matrix that will perform such
parallel configurations. And, since we are implementing a large network of supercells
anyway, we can augment our supercell design to perform these parallel configurations.
Thus, as the matrix is being tiled with supercells, those that have already been created
will participate in the creation of other supercells.

PRE-CONFIGURATION OF CELL MATRIX AS A SUBSTRATE OF SUPERCELLS

This tiling phase occurs prior to configuring a target circuit on the Cell Matrix. During
the tiling phase, the atomic units of the Cell Matrix (cells) are effectively replaced by the
larger atomic units of the final circuit (supercells). This can be viewed as introducing
layers of organization on the system, as shown in Figure 2.6. At the conclusion of the
tiling phase, the Cell Matrix will be tiled with a collection of supercells. Note that in

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

some sense, from a biological perspective, the role of a Cell Matrix cell corresponds to
that of a molecule; the role of a supercell corresponds to that of a biological cell; and the
target circuit corresponds to a biological organism.

The tiling process is driven by the transmission of cell configuration strings to a set of
cells along an edge of the matrix. As part of this process, it is necessary for supercells to
perform two dual functions. When a supercell is surrounded by other supercells, it must
simply pass configuration information to nearby supercells. If, however, a supercell is
located along the perimeter of a region, i.e., if it is adjacent to unconfigured cells, then it
must use the configuration information it has received to configure a new supercell.
Thus, in some cases, a supercell treats configuration information as data, while in other
cases it treats the same information as code. This is the self-duality of a supercell, and is
illustrated in Figure 2.7. Figure 2.8 shows the effect of the tiling process, and illustrates
why order(n2) supercells are configured after n steps.

All of the routing of configuration strings to achieve parallel configuration is handled by
the supercell network itself. The entire system is still just sent a single copy of the
configuration string. This may result in the configuration of a single new supercell, or of
1,000 new supercells in parallel. The input to the system is the same, just a single
configuration string. Parallel utilization of this string is achieved by the supercell network
itself.

Note that the process of configuring supercells is, in fact, simply the process of
configuring individual Cell Matrix cells in an appropriate way so as to create supercells.
This is accomplished by having a target cell's D input set to the appropriate value (1 or 0)
prior to each tick of a system clock, while the cell is in C-mode (meaning its C input is
1). The generation of the appropriate D input pattern can be achieved in many ways, but
is often the result of reading another cell's current configuration, i.e., reading bit patterns
from a cell library. Since the reading of the source cell and the writing of the destination
cell both occur under the same system-wide clock, there is no need for further
synchronization between source and destination. When the source cell has been fully
read, the destination cell will also have been fully written. For further details of the low-
level configuration of cells, see (Macias 2001).

TESTING OF THE CELL MATRIX

In addition to configuring supercells in parallel, another goal of the tiling phase is fault
detection (Durbeck 2002). We introduce the requirement that we want the system to
contain only defect-free supercells. Therefore, we will thoroughly test an area of the Cell
Matrix for defects immediately prior to configuring it to act as a new supercell.
Moreover, this testing is performed by the already-existing supercells that, by the above
requirement, can be assumed to be working perfectly. By inducting from a properly-
functioning initial supercell, we see that, barring the introduction of run-time faults, the
entire supercell network will be defect-free.

This is another form of self-duality: regions of cells are first tested by nearby supercells,

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

+

+

D

CLK

Q

Cell Matrix Layer

Circuit Layer

Super
Cell

Supercell Layer

Figure 2.6
Tiling of matrix with Supercells

The tiling can be viewed as a separate Supercell layer
implemented above the Cell Matrix layer. Above the Cell Matrix Layer
is the Circuit Layer, on which the actual target circuit is implemented.

This is purely an organizational view. The Circuit and Supercell Layers
are not actually separate from the Cell Matrix Layer.

S

A

B

A

B

S
TARGET
REGION

2

*
A

B

S

A

BB

A

Figure 2.7
Self-Duality in the Configuration versus Use of Supercells

This time sequence from top to bottom illustrates how each Supercell goes from being a target
of test-and-build configuration sequences to being the configurer, the source of test-and-build
configuration sequences. The configuration string S is repeatedly sent to a region containing

three Supercell-sized blocks. In the first time step, the leftmost block has already been
configured as a Supercell and is using structures and functions denoted by block A to test the
Target Region for defects. In the second time step, the Supercell is configuring Region 2 to be
an identical copy of its self. In the third time step, the Supercell has completed its configuration

of Region 2 and is now using structures and functions denoted by block B to pass S to
Supercell 2. Supercell 2 repeats the process with Region 3.

TARGET
REGION

3

*

S

Figure 2.8.a
Parallel Supercell Layout Pattern

The wavefront pattern of increase in the number of regions
tested and configured at each repetition of the Supercell
definition string is illustrated here. The small squares are

supercell-sized regions. Grey supercells have already been
configured and are now being used to pass the

configuration information to the edge of the configured
region. The black region indicates all cells that are tested
and configured in the current repetition, where one cycle

includes sending signals four times, in the direction of each
Supercell's Northern, Eastern, Southern, and Western
regions. Thus, all cells in black are configured with 4

repetitions of the Supercell definition. The configuration
string is repeatedly pumped into the upper left supercell,
as indicated by 'S.' With this starting point, and a lack of
defective regions, only the test and build signals to the

South and East result in new Supercells.

S

Figure 2.8.b
Parallel Supercell Layout Pattern, Defects

Encountered
Grey squares are nondefective regions that have already been
configured as Supercells. Black squares are Supercell-sized

regions that are tested and configured in this cycle. White
squares with 'X' are regions in which a defect was detected.

Defective regions cannot be used to configure new neighboring
regions. Thus they slow down configuration immediately around
them, but not for long, as illustrated by the bottommost 'X.' Note
that during this cycle, test-and-build commands are executed to

the East first, then to the South. Therefore during the pattern sent
to the East, the cell beneath the lowest 'X' is configured by its
western neighbor. This new Supercell immediately sends the

configuration pattern to the cell below it, when the test-and-build
to the South begins. Thus two regions are configured in this

column during this iteration, and the smooth edge of the parallel
configuration front is restored within this cycle.

and then, having passed those tests, they themselves become supercells, and participate in
the testing of other nearby regions, as illustrated in Figure 2.9.

The choice of which tests are applied to cells during the tiling/testing phase is largely
independent of the rest of this work, and in practice would be based on separate analysis
of the particular hardware implementation in terms of expected failure modes and
characteristics. For the present work, we created simple test patterns as a proof of
concept. More sophisticated test can be performed in a similar fashion. For example, in
one test, the target cell is configured as an inverter. Following this configuration string, a
test string is sent to the system, containing a pattern of 1s and 0s. A comparison string is
also sent to the system, containing the same pattern but with each bit inverted. The
supercell network routes the test string to the region under test (or regions, if multiple
regions have been configured and are being tested in parallel). Adjacent to each region
under test will be a supercell that reads the return pattern from the region under test, and
compares it to the expected return, a substring that is embedded into the configuration
string and available to all supercells when testing neighboring regions. If a supercell
detects a discrepancy, it will activate a circuit inside itself called a Guard Wall (Figure
2.18). The guard wall is simply a collection of cells inside the defect-free supercell,
configured in a particular way so as to prevent cells on the defective side from affecting
cells on the defect-free side. Thus, guard walls are not specialized hardware within the
Cell Matrix, but rather are composed of ordinary Cell Matrix cells. Since the guard wall
is contained inside a supercell, and supercells are only built on regions that are defect-
free, we can assume that guard walls are also defect free, at least at the time they are
configured.

Generally, the test patterns include not only input stimuli and expected output responses,
but also configuration commands for building test circuits within the region under test
(RUT). Typically, cells at the edge of the RUT are tested first, and are then used to build
pathways deeper into the RUT. As more cells are tested, more complex structures can be
built to further explore cells within the RUT, testing them in various configurations, from
different sides, and so on, as illustrated in Figure 2.10. The result is an extremely
thorough testing of the RUT prior to its configuration as a new supercell. Note also that,
since this testing is performed by supercells near the RUT, and is performed in multiple
regions in parallel. This preserves the speedup which was obtained via parallel
configuration during the tiling phase.

PASSAGE TO CIRCUIT LAYER

The primary goal of this research is to implement a desired target circuit on top of a Cell
Matrix (Macias 2002). But why should we use supercells to implement this circuit,
instead of directly composing the circuit from individual Cell Matrix cells? We have
already seen one reason, which is simplicity of the design process. However, the primary
reason is adaptability. When a circuit is composed directly from cells, the designer must
specify exactly which cells will perform which functions in the final target circuit. The
exact connection pathways among those cells must also be specified. Thus, the final
circuit is specified explicitly. Any implementation of the target circuit using the

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

Testing
Apparatus

*

*

Testing
Apparatus

Testing
Apparatus

*

*

Testing
Apparatus

Figure 2.9
Self-Duality in the Testing of Supercell Regions

Sequence of events from top to bottom. The region on the left is being tested; once it
has passed the test, it is configured such that it can perform the same test on the

region to its right.

*

*

*

*

Figure 2.10
Testing each cell within a Supercell for Defects

Testing proceeds through the Supercell region by building wires to each cell and
testing all sides directly reachable from the cell. Four stages of the test are shown,
with the large white box representing the region that is being tested before being
configured as a Supercell. Testing begins with access to a single cell within the

Supercell, depicted in the leftmost frame as a grey box with a star symbol. The center
grey cell is tested, followed by tests conducted on the black cells. Upon successful

completion of the testing, several of the tested, defect-free cells can be used as
portions of wires. The wire is extended to them, and the testing starts again at the next
cell in the column. Each row of the column is tested fully; however, for briefness only
four stages are shown. The black lines are cells that have been configured as pieces

of a 2-channel wire.

specification will be identical to any other implementation from the same specification.
Such a rigidly-specified circuit will tend to be extremely fragile. If the matrix contains
any defective cells, and those cells have been slated to be part of the final circuit, then the
final circuit cannot be implemented, because the implementation must use those cells, as
indicated by the circuit specification.

A more robust approach to circuit implementation is to create a self-organizing circuit
that first decides how to implement the target circuit, and then proceeds to actually
implement it. When examining this approach in terms of evolutionary selection, one can
view the target circuits as being functionally equivalent, but having different forms. The
function is rigidly specified by the system itself, by the process through which it self
assembles. The form, however, is decided by environmental factors, in particular the state
of the underlying hardware in terms of defects and damage. Thus, the environment
effectively selects the forms in which the final (fixed) functions are implemented. The
atomic unit of this self-organizing system will be supercells.

In order for supercells to function collectively as a self-organizing system, they will need
a number of capabilities beyond those of simple cells. Like cells, supercells must
communicate with one another. However, whereas cells exchange a single piece of
information with their immediate neighbors, supercells must exchange a variety of
information, not only with immediate neighbors, but with remote supercells as well.
Therefore, supercells requires powerful communication channels among themselves.

Because supercells are to be able to create new supercells, they must contain extensive
circuitry for modifying collections of cells, not only adjacent to themselves, but non-
adjacent as well. With this power, however, comes a risk. Because supercells can affect
large numbers of cells in the matrix, it is possible that a malfunctioning supercell could
do considerable damage to other cells in the matrix. Therefore, in the event that a
supercell contains cells that are not functioning properly, there must be some way to
isolate the effects of that faulty supercell, without relying on cooperation from the faulty
supercell itself. Thus, supercells must be able to protect themselves from malfunctioning
supercells. The detection of faulty regions of the Cell Matrix, and the activation of
circuitry inside the supercells to protect them from faulty regions, are part of the
preliminary tiling phase of the system (along with the synthesis of the supercells
themselves).

The primary function of a supercell network is to self-organize into a target circuit, and
this function accounts for most of a supercell's complexity. In order to accomplish this, a
supercell needs to perform a number of functions. First, it must be able to decide what
part of the final circuit it itself will implement, and then it must differentiate into that
circuit element. Second, it must locate other elements with which it needs to
communicate. Third, it must establish communication with those other elements. And
fourth, it must participate cooperatively with the other supercells in the system, so that
each supercell can perform its own required functions. Execution of these steps is
referred to as the differentiation and self-wiring phase of the system.

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

DIFFERENTIATION OF FINAL CIRCUIT'S ELEMENTS

All of these steps are governed by a single set of instructions called a genome. For any
given target circuit, there is a single genome, regardless of how that circuit will
eventually be implemented on the Cell Matrix. The genome describes only the functional
behavior of the target circuit. It does not specify how that functional behavior should be
implemented. The collection of supercells will itself analyze the Cell Matrix hardware,
and then determine how to implement the indicated functional behavior. Figure 2.11
illustrates a sample implementation of a target circuit.

The genome can be viewed as an abstract circuit specification. It indicates what elements
the final circuit will contain, and how those elements should be interconnected. The
supercells will use this abstract circuit specification to perform the differentiation and
routing operations described above. Figure 2.12 shows a genome for an example circuit.

It should be noted that each supercell must be identical to every other supercell in the
system. This is important, since it allows parallel configuration of supercells (which is
essential for efficient operation of the system), and because it allows interchangeability
among the system's atomic units (which is essential for maximal fault tolerance).
Therefore, each supercell contains the same genome as every other supercell. In order for
supercells to differentiate, they must therefore dynamically determine among themselves
some unique characteristic associated with each of them. This can be done by noting their
position in the matrix, relative to other supercells. Thus, supercells have been given the
ability to generate unique IDs. Figure 2.13 shows an initial set of self-assigned IDs in a
supercell tiling. These are called Static IDs. They are very easy to assign, as they are
based on a supercell's row and column in the tiling. By consulting its neighbors, a
supercell can easily assign itself an ID by adding or subtracting from its neighbors' rows
and columns. However, because these IDs are position dependent, they cannot be used in
the genome, since the genome can contain only position-independent information.
Therefore, these Static IDs are used to generate a second set of IDs, called Dynamic IDs.
Dynamic IDs are assigned sequentially to supercells in ascending order of their Static
IDs. These assignments thus vary depending on the placement of supercells within the
matrix, i.e., on the location of defective regions in the matrix. However, regardless of
where faults have occurred, it is guaranteed that all consecutive Dynamic IDs will be
assigned, up to the number of supercells in the tiling. Figure 2.14 shows the Dynamic ID
assignment corresponding to the Static IDs from Figure 2.13.

The genome for the final circuit uses Dynamic IDs to refer to particular circuit elements.
Therefore, in order to differentiate, each supercell consults the genome (recall, each
supercell has a copy of the complete genome), identifies the section that refers to its own
Dynamic ID, and thereby learns what function it is to implement in the final circuit. The
supercell then configures a set of cells inside itself to implement that function.

SELF-WIRING OF THE FINAL TARGET CIRCUIT

Self-wiring of the final circuit requires the discovery of pathways throughout the

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

+

D

LD Q

+

C

B

A

O

+

D
LD Q

C

B

A

O

LD

A

Figure 2.11
Illustration of Silicon Chip with Supercells and Target Circuit

This is intended as an illustration of the technique as it could be used on a custom
ASIC silicon chip to detect defects and come up with a layout of the desired circuit
despite defective regions within the hardware. The white inset shows a schematic

diagram of a simple target circuit with inputs A,B,C and output O. The more detailed
illustration depicts a silicon chip and its packaging. The chip contains an array of Cell

Matrix cells. The method has already been run on the chip, leaving an array of
Supercells, as indicated by light grey boxes, and isolated defective regions, as

indicated by dark grey boxes. The functions performed by the Supercells are shown in
a schematic representation on the white boxes. A,B,and C can then be passed into

the chip from input pins, and O can be read from an output pin.

+ +

D Q

B

C

O

A

LD

+

D

Q

Clk 5

D

Q

Clk 7

1

D

Q

Clk 9

D

Q

Clk 11

2

D

Q

Clk 13

D

Q

Clk 15

3

2

1

17

 1 7 0 18 1 1
 2 11 0 18 1 1
 3 15 0 3 0 0
 5 17 1 2 19 9
 7 5 2 2 19 9
 9 7 1 2 19 9
11 9 2 2 19 9
13 11 1 2 19 9
15 13 2 2 19 9
17 7 15 2 20 1} }

Node IDs Function

Figure 2.12
Genome for a Sample Circuit

The sample circuit is a linear feedback shift register, which generates
pseudo-random numbers. The genome on the left is a string of integers arranged

 in groups of 6, arranged as a table here where each row is a group.
In each group, the first integer N is the node number of the node

being described. The second and third numbers are the node
numbers of any nodes that send data to node N. The last three numbers

indicate the function of node N. For example, the fourth line indicates
 that node 5 receives inputs from nodes 17 and nodes 1, and

that node 5 performs the function [2,19,9] which means a D flip flop.
Note that I/O nodes are bidirectional, thus nodes 1 and 2 appear as both

input and output nodes.

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

2,9

3,1

3,2

3,3

3,4

3,5

3,6

3,7

3,8

3,9

4,1

4,2

4,3

4,4

4,5

4,6

4,7

4,8

4,9

5,1

5,2

5,3

5,4

5,5

5,6

5,7

5,8

5,9

6,1

6,2

6,3

6,4

6,5

6,6

6,7

6,8

6,9

7,1

7,2

7,3

7,4

7,5

7,6

7,7

7,8

7,9

8,1

8,2

8,3

8,4

8,5

8,6

8,7

8,8

8,9

9,1

9,2

9,3

9,4

9,5

9,6

9,7

9,8

9,9

Figure 2.13
Static ID Assignment in a Supercell Tiling

Each grey box is a Supercell. Black boxes indicate faulty regions.
A Supercell's Static ID is based on its absolute position in the tiling,

and thus can not be used in the circuit's genome.
For example, Static ID "3,5" is not present in this tiling.

1

2

3

4

5

6

7

8

9

1,1

10

1,3

11

12

1,6

13

1,8

14

1,1

15

16

17

1,5

18

19

20

21

22

23

1,3

24

25

1,6

1,7

26

27

28

29

30

31

32

33

34

35

36

37

1,2

38

39

1,5

40

41

42

43

44

45

1,3

1,4

46

47

1,7

48

49

50

51

1,3

1,4

1,5

52

53

54

55

56

57

1,3

1,4

1,5

58

59

60

61

Figure 2.14
Dynamic ID Assignment in a Supercell Tiling

Each grey box is a Supercell. Black boxes indicate faulty regions.
Dynamic IDs are sequential integers, assigned sequentially to Supercells

in increasing order of their Static IDs. Dynamic IDs correspond to node numbers
in the target circuit's genome.

supercell network from one supercell to any other supercell with which communication is
required. We modeled our approach on the “ping” command available on most Unix
machines. The ping may travel along multiple routes to the destination, but upon
reaching the destination, it is returned to the originator with routing information
appended, so that the source learns of a path to the destination. This is also similar to the
work of (Moreno 2001), that allows already-built pathways to be shared by multiple
sources and destinations, whereas the present work creates separate pathways for every
source/destination pair.

To wire themselves together and thereby complete implementation of the target circuit,
the supercells work sequentially, in the order given by their Dynamic IDs. The first
supercell builds a broadcast network, allowing it to transmit information to all other
supercells in the system. It then consults the genome, and determines the Dynamic ID of
any supercell with which it needs to communicate. A “ping” is then transmitted to all
supercells, indicating the Dynamic ID that is being sought. Figure 2.15 shows a sample
transmission of this ping. It should be noted that the broadcast network must be loop-
free; there should only be one path to any given supercell. This is necessary so that, when
the broadcast is terminated, it is not preserved in any feedback loops. The procedure for
building the broadcast network ensures that there are no loops in the network.

When the ping reaches the desired supercell, that supercell will respond with an
acknowledgment. The acknowledgment is sent to the original supercell along the same
route on which the ping was received. However, as the acknowledgment is sent, the
supercells that pass it along note the route it is taking, and add that routing information to
the front of the acknowledgment. Therefore, when the acknowledgment reaches the
original supercell, it will contain routing information that indicates how to reach the
original destination of the ping. In Figure 2.16, the echo of the ping is sent from the
supercell marked “+” back to the originating supercell, marked “*.” The first supercell to
receive this echo (the supercell below “+”) notes its reception from the North, and
appends the tag “N” to the beginning of the echo. The next supercell in the transmission
chain (the the left of the previous supercell) notes the echo's arrival from the East, and
prepends “E” to the echo. This continues, until the echo returns to supercell “*.” At this
point, the full echo will contain the string “E,E,N,N,N,N,E,N.” These are precisely the
directions which must be taken from “*” in order to reach “+.” In this way, the
originating supercell knows how to reach the desired supercell.

Finally, the originating supercell uses this routing information to send a series of channel-
building commands through the supercell network. These commands will be passed by
some of the supercells as data, but will eventually reach a supercell that interprets the
commands as code, and uses them to actually change the configuration of cells within
itself. By carefully controlling the configuration of these steering cells within intervening
supercells, a communication channels can be built between the source and the target of
the ping.

In this way, each supercell in turn establishes the necessary communication channels
between itself and other supercells, such that in the end, the differentiated elements of the

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

1,1

1,3

1,6

1,8

1,1

1,5

*

+

Figure 2.15
Pinging of One Supercell from Another

The source Supercell is marked with an "*" and is looking for
the Supercell marked with a "+"

Arrows show the loop-free broadcast network which has been built by "*"
and allows "*" to broadcast to every Supercell in the system.

The path from "*" to "+" is shown by the heavier arrows.

1,1

1,3

1,6

1,8 *

+

Figure 2.16
Echo of Ping from Target Supercell "+" to Source Supercell "*"

The ping is returned along the same path as the original ping, but in the
reverse direction. Each Supercell that helps return the echo appends

directional information (indicated in each Supercell) to the beginning of the
return packet, indicating from where the echo came into the Supercell.

Here, the final echo contains the string E,E,N,N,N,N,E,N.

N
E

N

N

N

NEE

final circuit are interconnected, as specified by the genome, to implement the final
circuit's desired functional behavior.

3. EXPERIMENTS AND RESULTS

To test and further develop these concepts, a series of experiments was performed. First,
a supercell meeting the above criteria was designed. Figure 2.17 shows a functional view
of this design. The supercell contains a number of subsystems:
• a Genome, which describes the target circuit;
• an ID Arbitrator and Node ID, which determine and store the dynamic ID of the

supercell, and thus help determine the role the supercell will play in the final circuit;
• Test Logic, for analyzing Cell Matrix cells, determining when a cell is faulty, and

setting Failure Flip Flops to activate Guard Walls, thus isolating the supercell from
nearby faulty regions;

• numerous I/O lines for, among other things, configuring nearby regions to be new
supercells;

• Trace Generation logic and Dynamic Routing control, to locate those supercells it
should connect to and determine pathways to them;

• a Route Synthesizer and Wire Building Cell Library, for configuring cells in the
Steering Build Areas of other supercells, thus steering the movement of both
configuration commands and pure data through supercells' Pass-through Channels,
thereby creating communication channels to remote supercells (this is another
example of self-duality in a supercell);

• a Differentiator and Functional Block Library for customizing an internal Functional
Block that will represent an element of the final target circuit; and

• various Clocking and Control logic for directing all of these operations autonomously.

Next, a Cell Matrix layout was generated to implement the above circuit. This was done
using the Cell Matrix Graphical Layout Editor (Cell Matrix Corporation 2001). The Cell
Matrix implementation of the above supercell is a 270x270 circuit, containing 72,900
individual Cell Matrix cells. The design was then compiled into a binary representation,
and the resulting compiled circuit description was used to generate a set of configuration
strings that, when sent to an empty Cell Matrix, cause the above tiling, differentiation and
wiring phases to occur.

These configuration strings were then sent to a simulated 2000x2000 Cell Matrix, and
their effect on the Matrix was observed. Finally, the outcome of the process, the target
circuit operating on top of the supercells, was tested by setting inputs to different values,
and observing the resulting outputs. For the circuits on which we tested this system, the
final circuit always worked perfectly.

FAULT TESTS

Next, we added simulated faults to the Cell Matrix simulator, including stuck-at-0 faults,
stuck-at-1 faults, and faults where cells cannot change mode. We then requested that

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

certain cells inside the matrix be simulated as being faulty, and sent into the matrix the
same configuration strings from the earlier tests. In these cases, we now observed that
supercells located near the faulty cell(s) detected the presence of faults, and activated
their guard walls to isolate the effects of those faults. Figure 2.18 shows how supercells
work in tandem to isolate a faulty region of the Cell Matrix. Again, following the tiling
phase, the system's supercells differentiated and self-wired, and again implemented
perfectly working versions of the target circuit.

To further test the ability of the system to detect failures in the Cell Matrix itself, we also
performed tests on physical (as opposed to simulated) hardware. Using a different type of
reconfigurable hardware, a Xilinx ® Spartan-IITM FPGA (Xilinx Corporation 2001)
controlled by a PC using a BurchED prototyping board (Burch 1997), we were able to
implement a small Cell Matrix in hardware. The implementation was done using Xilinx's
Webpack, which is a freely available design and place-and-route package.

Instead of creating a perfect layout, we modified the implementation so that a single cell
had one of its inputs stuck-at-0. We then sent the supercell configuration strings into this
hardware Cell Matrix, and observed that the cell testing section indicated a failure in the
Cell Matrix, at precisely the cell that contained the “fault.” Figure 2.19 shows the
schematic for the Cell Matrix that was implemented on top of the FPGA, including the
input which is stuck-at-0.

It should be noted that while the Cell Matrix architecture is fault isolating, this particular
hardware implementation of a Cell Matrix on top of an FPGA is not actually fault
isolating, because the underlying hardware (the FPGA), like most hardware, is extremely
fault sensitive. Should even a single defect arise in the FPGA itself, the Cell Matrix will
likely not longer function properly, because the FPGA will no longer be able to
implement the architecture correctly. To realize the fault isolation potential of the Cell
Matrix architecture, it needs to be implemented directly in silicon, or on some other
medium that is not inherently fault sensitive.

In addition to the above tests, we wanted to more thoroughly test (on the simulated Cell
Matrix) the ability of the system to self-organize into the final target circuit despite the
presence of faults. We decided to perform these tests separately from the tiling-phase
tests. This decision was made because:
1. the tiling phase uses a high degree of parallelism, and therefore runs very slowly on a

sequential simulation (e.g., on a PC);
2. the outcome of the tiling phase is relatively predictable, as it depends only on the

location of the faults and the location of the edge cells to which the configuration
strings are applied; and

3. the tiling phase is logically separate from the differentiation and self-wiring phase, and
thus it is safe to evaluate each separately.

In view of this, for our subsequent tests, we switched to simply tiling the matrix using the
simulator's ability to directly manipulate any cell within the system. Following this tiling,
we then let the system's supercell's perform their differentiation and self-wiring phases.

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

Figure 2.17
Supercell Block Diagram

defective
region

S(East)

guard
wall
activated

Super
Cell

S(South)

S(West)

S(North)

Figure 2.18
Isolation of Defective Region

via Guard Wall Activation
A 4-part time series showing the

activation of guard walls on the four
boundaries of a faulty region. All grey

boxes are supercells, the center square
is a region that has not yet been tested

or configured. The center region
contains a defect. The configuration
string S is passed to all supercells in

the region at the same time step, since
all are fully connected to the origin point

in the upper left where S is shown
arriving. The first cycle directs defect
testing to the East, which causes the
first cell, to the West of the defective
region, to detect it and raise its guard

wall. The second cycle directs fault
direction to the South, which causes the
cell to the North of the defective region

to detect it and raise its guard wall. After
test-and-build commands to the West

and North, the faulty region is
completely isolated, no signals from it

can escape and disturb the behavior of
the neighboring good hardware.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

resetbuf

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

Cin DinCout Dout

Cin Din Cout Dout

Cin

Din

Cout

Dout

Dout

Cout

Din

Cin

Phi 1

Phi 2

Reset

cell

IBUF

IBUF

IBUF

Reset

Phi2

Phi1

CN
O

ut0
0

DN
O

ut0
0

CN
O

ut0
1

DN
O

ut0
1

CN
O

ut0
2

DN
O

ut0
2

CN
O

ut0
3

DN
O

ut0
3

CN
O

ut0
4

DN
O

ut0
4

CN
O

ut0
5

DN
O

ut0
5

CN
O

ut0
6

DN
O

ut0
6

CN
O

ut0
7

DN
O

ut0
7

DEOut07
CEOut07

DEOut17
CEOut17

DEOut27
CEOut27

DEOut37
CEOut37

DEOut47
CEOut47

DEOut57
CEOut57

DEOut67
CEOut67

DEOut77
CEOut77

DS
O

ut7
7

CS
O

ut7
7

DS
O

ut7
6

CS
O

ut7
6

DS
O

ut7
5

CS
O

ut7
5

DS
O

ut7
4

CS
O

ut7
4

DS
O

ut7
3

CS
O

ut7
3

DS
O

ut7
2

CS
O

ut7
2

DS
O

ut7
1

CS
O

ut7
1

DS
O

ut7
0

CS
O

ut7
0

CWOut70
DWOut70

CWOut60
DWOut60

CWOut50
DWOut50

CWOut40
DWOut40

CWOut30
DWOut30

CWOut20
DWOut20

CWOut10
DWOut10

CWOut00
DWOut00

XL
XN

_7

XL
XN

_7
15

o(0:63)

o(
0)

o(
1)

o(
2)

o(
3)

o(
4)

o(
5)

o(
6)

o(
7) o(
9)

o(
8)

o(
10

)
o(

11
)

o(
12

)

o(
13

) o(
14

)

o(
15

)

o(16)
o(17)

o(18)
o(19)

o(20)
o(21)

o(22)

o(23)

o(24)

o(25)

o(26)

o(27)

o(28)

o(29)

o(30)

o(31)

o(
32

)

o(
33

)

o(
34

)o(
35

)

o(
36

)

o(
37

)

o(
38

)

o(
39

)o(
40

)

o(
41

)

o(
42

)

o(
43

)

o(
44

)

o(
45

)

o(
46

)

o(
47

)

o(48)

o(49)

o(50)

o(51)

o(52)

o(53)

o(54)

o(55)

o(56)

o(57)

o(58)

o(59)

o(60)

o(61)

o(62)

o(63)

IBUF

IBUF

IBUF

IBUF

a1in

val

state

strobe

resetbuf

IBUF
a0in

OBUF

OBUF

OBUF

ou
t1

out3out0

parport
Reset

a0in

a1in

Val

State

Strobe

o(0:63)

XLXN_735

GND

Figure 2.19
Cell Matrix Implementation on Top of an FPGA

64 cells are arranged in an 8x8 pattern.
Cell in row 2, column 8 has its D input shorted to ground

to simulate a defect in the Cell Matrix's hardware. An enlargement
of the defect is shown in the upper right (circle).

Cout Dout

Din

Cin

GND

We further enhanced the simulator to allow the recording of certain state information
from each supercell, including information from the Functional Block, Failure Flip Flops
and Steering Build Areas. We then created post-run analysis tools to read this state
information and produce a graphical display of the system's final state. This allowed us to
analyze how the system worked around faulty areas and wired together the final circuit.
We also automated a process for setting the final circuit's inputs to different
combinations, and recording the resulting behavior of the circuit.

TEST RESULTS

Figure 2.20 shows a sample of the system's output following the differentiation and self-
wiring phase of the system. In the test illustrated by this figure, a network of 25
supercells was used, with five of them being defective, as shown. The lines and circles
show the mapping of connections from one supercell to another. When a line enters a
supercell, it travels around a circle to emerge on another side. The color coding is simply
to aid in following a signal's path around a circle.

For example, in Figure 2.20, the supercell in row 4, column 1 ([4,1]) sends its output to
the right, to supercell [4,2]. [4,2] sends this data to its right, to [4,3] (follow the purple
circle), and [4,3] is the final recipient. Similarly, supercell [1,4] sends it output to the
right to [1,5] (purple circle), then to [2,5] (red circle), to [3,5] (red circle), to [3,4] (blue
circle), to [3,3] (blue circle), to [2,3] (turquoise circle), to [2,2] (blue circle), to [1,2]
(turquoise circle), to [1,1] (blue circle), and finally to [2,1], where the path terminates.

Using this test setup, we analyzed the behavior of the system in its synthesis of a one-bit
adder, a three-bit counter, and a three-bit Linear Feedback Shift Register (pseudo-
random number generator), under a variety of fault conditions. Figure 2.21 shows the
results of one set of tests, where an increasingly difficult pattern of faults was presented
to the system. For readability, the output graphs such as that shown in Figure 2.20 have
been simplified, with all pathways from one side of a supercell to another being shown as
a single line. In all cases, the system was able to autonomously self-organize into a
working final circuit, despite the presence of faults in the Cell Matrix.

4. DISCUSSION

The techniques described appear to provide a Cell Matrix hardware/software system the
ability to reorganize its own digital circuitry to avoid its own defective hardware. This
makes it possible for a system to modify itself in response to damage, relocating critical
functions to safer locations and regrowing signal pathways. The capability to exhibit
these types of responses to events that harm it is unusual for synthetic systems. This work
is significant in that it invests the synthetic system itself with these capabilities, giving it
higher degrees of the autonomy and robustness that living systems exhibit. Historically,
digital electronics do not self-repair; recovery from damage is extremely rare, and it is

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

Failed

Failed

Failed

Failed

Failed

Figure 2.20
Sample circuit routing in the presence of faults

Each block is a Supercell, or a region containing one or more defects.
Lines indicate a communication pathway from one Supercell to another.

Lines that terminate at the edge of a Supercell are inputs to that Supercell's functional block.
Colored circles show the passage of a signal from one side of a Supercell to another.

Lines emerging from a circle with no input to the circle come from the Supercell's
functional block's output.

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9 30

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

30

Figure 2.21
Results of High Level Simulations

The high level algorithm simulation was run for the same circuit
genome with different numbers and locations of defects. Each 7x7

array of Supercells represents one run. Black regions contain defects
and were not configured as supercells by the algorithm. Grey and

white regions are Supercells, grey indicates those that were
differentiated into functional logic blocks. Numerals indicate which logic

block. Lines represent one or more wires the algorithm creates
between components. The ability to detect and work around defective
areas is evident, as is the variability the defects the faults introduce.

generally achieved through a high degree of external intervention: a human or other
complex external monitoring system detects failures, diagnoses the problem, attempts to
repair and reinitialize the system, and if unable, replaces the damaged components.
Viewed as a whole, this traditional system of hardware combined with a repair
mechanism is quite complex and labor-intensive.

If instead all of a system's digital electronics could self-repair, it would be possible to
limit the work done to maintain the system. The system could handle most of it itself.
External intervention would be required just to monitor subsystems for proper or
improper functioning, suspend or notify those processes that are dependent upon a failed
subsystem, direct a failed subsystem to repair itself, and resume normal functioning once
the subsystem has completed the repair. In the event that the failure is too massive and
the subsystem cannot recover, conventional techniques for replacing components could
be used (not all of which require a repair person). If a higher degree of autonomy were
required for the system, it could be invested with the ability to send the configuration
string that builds the missing subsystem to a piece of spare unused Cell Matrix hardware
kept in reserve. In either case, it seems reasonable to expect that having subsystems
repair themselves frees up the larger system's time and resources, because it would be
able to focus most of its efforts on just those subsystems that have failed in a massive
way and need to be replaced.

This delegation of the details of self-repair to each subsystem would seem to permit the
development of much more complex systems than are possible today – ones comprised of
many more subsystems. Each subsystem can be designed in the same manner, as a system
with many self-repairing subsystems, as appropriate for the complexity of the subsystem
and the physical and computing resources it possesses. Figuring out exactly how to
achieve this image is no small engineering feat. What we have provided is simply an
existence proof for adaptive, self-repairing Cell Matrix systems, and one technique for
achieving such systems.

Other techniques are conceivable, and might be more appropriate than the one described
here, depending on the specifics of the situations and constraints it addresses. A
significant aspect of the supercell technique is that it renders defect-tolerant a large part
of the defect testing and accommodation process. More specifically, checking for faults is
done by supercells, which are created only on hardware that has successfully tested as
defect-free. There is no external testing system that also must be checked and maintained
defect-free. Within the Cell Matrix hardware, there are no critical sections. Any region
can become a supercell, and any supercell can test its neighbors for defective hardware.
The process of testing all the hardware is performed by way of a completely distributed
web of supercells. Thus, defects encountered early in the process do not prevent the rest
of the regions around them from being tested, because the signals are automatically
routed around them. The process of wiring up circuit components is also done by this
highly connected web of surpercells, providing many options for routing each signal, and
thus increasing the likelihood that routes will be found. The only piece that must be
carefully maintained outside the Cell Matrix is the configuration string that contains the
definition of the supercell and the North-South-East-West building pattern. This can be

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

compactly represented and can be stored on a nonvolatile piece of hardware that is made
robust using standard redundancy or other conventional techniques for remote systems,
or transmitted/communicated to the system when needed.

To use this technique in a real-world setting, it would need a way to detect failures in the
implemented circuit in order to know when to rebuild. Standard voting schemes, built-in
test, or other strategies can be employed for this. The determination that a new fault has
occurred somewhere in the system is outside the scope of this work, and is left to
separate techniques. Once a failure has been detected, the Cell Matrix needs to be re-
initialized. The Cell Matrix architecture specifies a single system-wide RESET signal
that returns all cells' internal programs to a default power-up state. Once the matrix has
been re-initialized, the configuration strings are sent into the matrix, causing the
tiling/testing phase to execute. The end of the configuration strings contain a GO signal,
which terminates the tiling/testing phase, and causes operation of the system to switch to
the differentiation/self-wiring phase. At the conclusion of that phase, the system
generates its own COMPLETE signal, indicating to external systems that the synthesized
target circuit has been successfully implemented, and is ready for use.

DISCUSSION OF EXPERIMENTS AND RESULTS

The experiments conducted provide a reasonable amount of evidence that our approach
works. We would have a more compelling case if we showed a defective chip on which,
using this technique, we were able to lay out a target circuit that functions properly, and
we intend to attempt this. However, the way the problem was formulated, there is a
simple electronic target circuit that is the end result of performing the supercell technique
on Cell Matrix hardware. That circuit is expected to function perfectly, and this
expectation can be tested. When it is tested, it is tested not in a simplified model, but on
top of a detailed, low-level simulation of Cell Matrix hardware. Thus, proper function of
the target circuit implies proper function of the layers below it: the low-level Cell Matrix
hardware that comprises each piece of each supercell, as well as the supercell structure's
ability to implement the circuit elements and wires. Further, the target circuit was created
in the final stages of a simulation of the entire supercell process. Thus, proper function of
the final target circuit implies that the process by which it was obtained also functions
properly.

We used only a small number of test patterns in testing for faults, but the fault testing
technique is entirely general. The process of building pathways throughout a region
under test (RUT), so as to access each cell inside the RUT from all sides, is independent
of the choice of tests. Similarly, the method of testing regions in parallel, and then using
defect-free regions to test subsequent regions, is also independent of the particular tests
applied at each point.

As to what sorts of tests can be applied, there is no restriction on the test patterns that can
be used. For example, a cell can be configured to output whatever bit it receives. By
sending all 0s, one can ensure that all memory locations are capable of storing 0.
Likewise for a pattern of all 1s. A pattern of 10101010....1010 ensures that adjacent bits

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

are not shorted together. If the cell's internal program is physically stored in a 16x8
arrangement, a test pattern of 111111110000000011111111....00000000 would ensure
that no bits are shorted across adjacent rows. If an analysis of the physics of the
fabrication process suggested that a certain anomalous event would occur when a
particular bit pattern was stored in or received by a cell's circuitry, that pattern could be
sent to the cell being tested, and the resulting behavior observed by the supercell
performing the test.

The test circuits we implemented inside the supercell were extremely simple, and
basically combinatorial in nature; that is, the circuit cannot recognize behavior that
depends on the history of previous parts of the test. Rather, a test consists simply of an
input pattern and an expected output pattern. However, there is no reason a supercell's
testing logic can not be made more sophisticated, depending on the nature of the faults
that are to be detected.

In the scope of this work, we limited circuit size to fairly small test circuits as target
circuits. This was mainly for the sake of speed, as we were simulating the behavior of
this (parallel) system with a sequential program running on a single-CPU machine.
Therefore, we worked with small tilings of supercells, and limited our test cases to those
that would fit on such small tilings. However, the technique appears to scale well, and,
had we the benefit of parallel hardware, should be extremely efficient for larger target
circuits.

More extensive testing was done with a higher-level simulation of the supercells' self-
wiring techniques. These tests allowed larger tilings to be simulated, and in these larger
tests, the system continued to perform well, successfully routing circuits in the presence
of faults. As expected, the success of the system falls off slowly as the number of faults
increases, until a high fault density is reached, at which point the system has great
difficulty implementing the target circuit.

It should be noted that the particular supercell that was implemented in this work is only
an example of the general supercell technique. Many design choices were made in this
implementation: the size of the supercell; the nature of the functional blocks that each
supercell implements; the number of independent pathways that can be made through a
supercell; the structure of a target circuit's genome; and so on. There are also numerous
ways in which the self-routing of the system can be achieved. The implemented supercell
employs a greedy algorithm that takes the shortest path between each pair of supercells
that need to communicate. Because of this, routing of the entire final circuit could fail,
simply because of the order in which supercells elect to self-wire. This can be improved
upon greatly, using any of a variety of place and route algorithms. However, for a proof-
of-concept, we opted for the most straightforward approach, which was a greedy shortest-
path algorithm.

RELEVANCE

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

The large size of a supercell greatly diminishes the immediate applicability of this work.
However, fabrication techniques are undergoing intense research and development, and
may facilitate practical use of this work at a later date. As fabrication techniques move
closer to the single nanometer range, the scalability of this technique may become
critical. Despite the fact that we mostly tested small target circuits, this work method was
designed to scale up to large, practical, real-world systems, given a sufficiently dense
manufacturing technology for building the underlying Cell Matrix hardware.

The smaller the supercell, the sooner its applicability to manufacturing. The size of a
supercell is not an absolute: many inefficiencies exist in the present work that can be
improved upon. The 270x270 size of the final supercell is largely a function of the
prototypical nature of this research. Much of the supercell implementation consists of
unused cells. This is simply a reality of having to create the Cell Matrix implementation
by hand, due to the lack of sufficiently advanced compilation tools. Creating a design that
was easy to debug and edit was more important than creating one that was as small as
possible.

Also, in the current implementation, the functional block that is implemented by a
supercell is extremely small, consisting of only three Cell Matrix cells. This means that to
create a final circuit with the equivalent of “n” Cell Matrix cells could require
270x270x(n/3) Cell Matrix cells, i.e., the final circuit is roughly 24,000 times larger than
a native implementation directly on the Cell Matrix. This extremely inefficient situation
can be improved greatly by increasing the size of the functional blocks inside the
supercells. If, for example, the functional block was roughly 1,000 cells instead of 3, the
size of the supercell might increase from 72,900 cells to 75,000, but implementing a
circuit of “n” cells would now require 75,000x(n/1000) Cell Matrix cells, i.e., the final
circuit would only be 75 times as large as a native implementation. Functional blocks
consisting of thousands of cells might, for example, correspond to simple multi-bit
arithmetic units, small memory systems, basic signal processing modules, and so on.

Another issue to consider is how the supercell size impacts the ability of the system to
tile the Cell Matrix with supercells. Certainly, if the goal is to implement a circuit that
requires only 25 Cell Matrix cells, it makes little sense to begin by searching for 25
270x270 defect-free regions. It would be simpler to simply find a defect-free 5x5 region
and implement the target circuit directly on top of that.

The situation is different for large circuits though. Consider a fabrication technique that
can manufacture cells with only one fault per million cells. Since a supercell requires
72,900 defect-free cells, you can fit approximately 13 supercells in a one million cell
region. Assuming a single defect in that region, 12 of your supercells would be perfect,
and one would be defective. This amounts to a 8% defect rate for supercells. Viewed
differently, if your cell defect rate is one out of a million, then you can configure
supercells on 92% of your substrate.

Assuming a defect rate of one per million cells is achievable, you can thus use supercells
for implementing arbitrarily large circuits, much larger than a one-in-a-million rate

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

would normally permit. In other words, the supercell approach puts a cap on the size of
defect-free regions that are required to be abundantly available. Once the fabricating
technology can support large numbers of defect-free regions of the required size, you can
immediately scale up to arbitrarily large target circuits. The size of the target circuit does
not further impact the manufacturing requirements.

IMPLICATIONS

While Cell Matrices fabricated using today's silicon fabrication technology are not dense
enough to make this research practical for real-world applications, the implications of
this work used with future manufacturing technologies are manifold. In a realm where the
equivalent of transistor switches can be constructed from, say, a few hundred carbon
atoms, a mole of carbon could contain 6x1021 switches, sufficient to implement 6x1018

cells. Even with the current low-density supercell design, this would allow
implementation of 8x1013 supercells. If each supercell implemented a 3-cell functional
block, the resulting system could implement fault tolerant circuits roughly 40 million
times larger than today's most complex CPUs (Durbeck 2001b, Macias 2002).

In this way, the supercell technique discussed in this paper stands to benefit greatly from
the advent of nanotechnology and other atomic-scale fabrication technologies. However,
we believe this work can also be used by the nanotechnology community to assist in the
development of extremely dense fabrication technologies. Because the Cell Matrix is
composed of very simple atomic units, arranged in a very regular, infinitely scalable
organization, it makes an attractive manufacturing target. And, because fault-aware,
fault-tolerant circuits can be implemented on top of a Cell Matrix using techniques such
as supercells, it should be possible to implement properly-functioning circuits on
imperfect platforms, and to use those circuits to test and explore the underlying substrate.
Thus, there can be a symbiosis between new manufacturing techniques that allow denser
Cell Matrices, and Cell Matrices that assist the debugging of new manufacturing
techniques.

Traditional reconfigurable logic suffers from at-best linear configuration times, and
therefore would likely require prohibitively long setup times were they to be
manufactured at an Avogadro scale. In contrast, because the supercell tiling itself
performs the configuration of new supercells, we achieve better-than-linear configuration
times. For a 2-D tiling, n2 supercells can be tiled in roughly n steps. For 3-D, n3 supercells
can be tiled in n steps. This brings system configuration times back into a manageable
realm. Likewise, since testing is also performed in parallel, it should be practical to test a
huge, Avogadro-scale matrix by performing only 84 million tests.

Moreover, because the configuration strings that are sent to a Cell Matrix depend only on
the target circuit, and not on the location of faults in the matrix, a single set of
configuration strings could be sent to a number of physically distinct Cell Matrices in
parallel. Even though each matrix would receive exactly the same configuration string as
every other matrix, each would respond in its own way, depending on the location of

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

faults within its own hardware. In the end, each Cell Matrix would be configured
uniquely, to accomodate each Matrix's specific defects, despite each having received the
same strings. This too has tremendous implications for the manufacturing process.

FUTURE WORK

The next step in this research in terms of proving this method is to run experiments with
silicon chips that contain arrays of Cell Matrix cells. We will experiment first to see
whether the technique finds defects that we purposely introduce on the hardware; then,
given sufficient information about the hardware manufacturing technique, we will modify
the test patterns to capture those defects most likely to occur with the technique, and then
run experiments with a large number of silicon chips to determine whether the technique
finds the defects that are present, and creates working circuits despite the presence of
defects. We are particularly interested in how this could loosen the requirements for
highly novel manufacturing techniques such as those being developed at the scale of 1-10
nanometer transistor/feature sizes: extremely advanced silicon manufacture, molecular
nanotechnology, quantum dots, and others. If the manufacturing technique need not be
perfect, then this may open up the possibilities for choosing a wide variety of
manufacturing techniques, because there will probably be more techniques that are good
than that are perfect. Even techniques that are relatively poor may still be useful if they
are extremely dense (extremely small electronic components, close packing of cells) or
extremely inexpensive, and this is a way to utilize them.

We would also like to work with foundries and other researchers to use some of these
techniques to study a variety of manufacturing techniques that are currently in use or in
development. Of interest is whether this distributed, local defect detection mechanism
helps to improve the manufacturing processes themselves. Our expectation is that it will
provide highly localized information that can be used to find most or all the defects
present in the hardware, and that it can give more concrete information from which it can
be determined what measures to take to improve the manufacturing process. We are
interested in working with physicists, chemists, material scientists, and others in trying to
work back even further than the functional, software-level structure, seeing what
techniques might be helpful if used in conjunction with mechanical or chemical processes
to grow the physical structure, such as growth according to some description delivered by
the supercells.

Quite a few extensions or modifications of this approach merit investigation. Working
with three dimensional layouts of cells appears to be a way to provide many more ways
to connect any two components, and thus, may prove to be much more robust to
extensive damage. This could be achieved by extending the supercell definition to a three
dimensional Matrix and running experiments to compare the differences between 2-D
and 3-D systems in terms of types and locations and numbers of defects. If intending to
use this method in commercial electronic systems, we must first analyze its efficacy with

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

particular target applications and particular hardware manufacturing techniques: does
this technique work well for the kinds of damage encountered in the situation, and the
kinds of defects to which the manufacturing technique is prone? Given the dimensions of
a supercell, what is the minimum system size at which this cost is superseded by the
increase in adaptivity? How might this technique be adapted to the particulars: ideas
include making the supercell fit within a larger or smaller area, increasing the size of the
functional block implemented by each supercell, varying the placement of supercells
instead of the regular tiling used here.

Extending this general method to other types of problems besides circuitry on defective
hardware also merits investigation. Ideas include working with different kinds of
“payloads” other than a circuit definition in the form of a genome, use of different
specialized structures and functions (e.g., what block A in Figure 2.7 does) to see
whether we can figure out how to generalize the method or apply it to new problems such
as growing circuits in three dimensions, getting supercells to perform local optimizations
of a system, making the level at which the target circuit now lies have more capability for
self-analysis. In the current work it is simply a static circuit. This is a way to pursue our
interest in utilizing local, dynamic features in systems, in response to internal or external
events, situations, and phenomena.

Another variant of supercells might be created that does not require an externally-
supplied configuration string. Instead, the supercell definition would include how to build
a large network of supercells to cover the hardware. This would require that we merge
the supercell definition with previous work on self-replicating circuits. This may lead to
an extremely robust system: if there is some sort of hardware breakdown and only one
supercell survives with its definition intact, it could quickly restart the tiling process to all
sides and reestablish the supercell tiling. Possibilities that corruption of the supercell
definition would lead to a supercell that could still replicate itself, but that had some sort
of mutation, could result in a means by which the supercell's behavior drifts and evolves.

We believe the supercell method is generalizable to at least several other problems that
can be similarly formulated.

ACKNOWLEDGEMENTS

Much of this work was funded by NASA SBIR Contract NAS2-01049. The authors
gratefully acknowledge the support of Ames Research Center and NASA. We also wish
to thank Chrystopher L. Nehaniv, René te Boekhorst, Kerstin Dautenhahn and the attendees of the
Evolvability and Individuality Symposium (St. Albans, 2002) for many useful and stimulating discussions.
The authors also gratefully acknowledge the many useful comments and suggestions from the reviewers of
this manuscript.

REFERENCES

Amerson, R., Carter, R.J., Culbertson, W.B., Kuekes, P. and Snider, P.(1995):Teramac --
Configurable Custom Computing. In Proceedings of the 1995 IEEE Symposium on

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

FPGA's for Custom Computing Machines, pages 32-38.

Bradley, D. W. and Tyrell, A. M. (2000): Immunotrics: Hardware Fault Tolerance
Inspired by the Immune System. In Miller, J.F., Thompson, A., Thomson, P. and Fogarty,
T. C. (eds): Evolvable Systems: From Biology to hardware, Third International
Conference, ICES 2000, pages 11-20.

Burch Electronic Design(1997):http://www.burched.biz/index.html

Burks, A. W. (1961): Computation, Behavior and Structure in Fixed and Growing
Automata. In BehavioralSc, 6, pages 5-22.

Cell Matrix Corporation(1999):http://www.cellmatrix.com

Cell Matrix Corporation(2000):Downloadable Simulator. At
http://www.cellmatrix.com/entryway/products/software/simulator.html

Cell Matrix Corporation (2001):Portable Layout Editor. At
http://www.cellmatrix.com/entryway/products/software/layoutEditor.html

Culbertson, W., Amerson, R., Carter, R., Kuekes, P. and Snider, G. (1996): The Teramac
Custom Computer: Extending the Limits with Defect Tolerance. In Proc. IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems.

Durbeck, L. and Macias, N.(2001a):Self-configurable parallel processing system made
from self-dual code/data processing cells utilizing a non-shifting memory. US Patent
#6,222,381.

Durbeck, L. and Macias, N.(2001b):The Cell Matrix: an architecture for nanocomputing.
Nanotechnology 12:217-230.

Durbeck, L. and Macias, N.(2002):Defect-tolerant, fine-grained parallel testing of a Cell
Matrix. In Schewel, J., James-Roxby, P., Schmit, H. and McHenry, J. (eds): Proc. SPIE
ITCom 2002 Series 4867, pages 71-85.

Heath, J. R., Kuekes, P. J., Snider, G. S. and Williams, R. S. (1998): A Defect Tolerant
Computer Architecture: Opportunities for Nanotechnology. In Science, V.280, No 5370,
pages 1716-1721.

Jackson, A. H. and Tyrell, A. M. (2001): Asynchronous Embryonics. In Keymeulen, D.,
Lohn, J., Stoica, A. and Zebulum, R. S. (eds): Proceedings of the 3rd NASA/DoD
Workshop on Evolvable hardware, pages 201-210.

Macias, N.(1999):The PIG Paradigm: The Design and Use of a Massively Parallel Fine
Grained Self-Reconfigurable Infinitely Scalable Architecture. In Stoica, A., Keymeulen,
D. and Lohn, J. (eds): Proc. The First NASA/DOD Workshop on Evolvable Hardware,

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

pages 175-180.

Macias, N.(2001):Circuits and Sequences for Enabling Remote Access to and Control of
Non-Adjacent Cells in a Locally Self-Reconfigurable Processing System Composed of
Self-Dual Processing Cells. US Patent #6,297,667.

Macias, N. and Durbeck, L.(2002):Self-Assembling Circuits with Autonomous Fault
Handling. In Stoica, A., Lohn, J., Katz, R., Keymeulen, D. and Zebulum, R.S. (eds):
Proc. The 2002 NASA/DOD Conference on Evolvable Hardware, pages 46-55.

Mange, D., Sipper, M., Stauffer, A. and Tempesti, G. (invited paper, 2000a): Towards
Self-Repairing and Self-Replicating Hardware: The Embryonics Approach. In
Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pages 205-214.

Mange, D., Sipper, M., Stauffer, A. and Tempesti, G. (2000b): Towards Robust
Integrated Circuits: The Embryonics Approach. In Proceedings of the IEEE, Vol. 88:4,
pages 516-541.

NASDA Office of Research and Development(1996):Research on Space Fault Tolerance.
In NASDA Report No. 49.

Moreno, J. M., Sanchez, E., Cabestany, J. (2001): An In-System Routing Strategy for
Evolvable Hardware Programming Platforms. In Keymeulen, D., Lohn, J., Stoica, A. and
Zebulum, R. S. (eds): Proceedings of the 3rd NASA/DoD Workshop on Evolvable
hardware, pages 157-166.

OptiMagic(1997):Programmable Logic Jump Station. At
http://www.optimagic.com/

Ortega-Sanchez, C., Mange, D., Smith, S. and Tyrrell, A.(2000): Embryonics: A Bio-
Inspired Cellular Architecture with Fault-Tolerant Properties. In Genetic Programming
and Evolvable Machines 1(3), pages 187-215.

POE(2002): Webpage for the Poetic Project. At http://www.poetictissue.org/

Prodan, L., Tempesti, G., Mange, D. and Stauffer, A.(2001): Embryonics: Artificial Cells
Driven by Artificial DNA. In The 4th International Conference on Evolvable Systems,
pages 100-111.

Stauffer, A., Mange, D., Tempesti, C. and Teuscher, C. (2001): BioWatch: A Giant
Electronic Bio-Inspired Watch. In Keymeulen, D., Lohn, J., Stoica, A. and Zebulum, R.
S. (eds): Proceedings of the 3rd NASA/DoD Workshop on Evolvable Hardware, pages
185-192.

Vanstone, S.A. and van Oorschot, P.C.(1989):An Introduction to Error Correcting Codes
with Applications. Kluwer Academic Publishers, Boston.

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

Xilinx Corporation(2001):Xilinx Datasheet, Spartan-II 2.5V FPGA Family: Functional
Description.

von Neumann, J. (1966): The Theory of Self-Reproducing Automata. Burks, A. W. (ed),
University of Illinois Press.

N.J. Macias, L.J.K. Durbeck/Biosystems 73 (2004) 173-204 ©2004 Elsevier Ireland Ltd.

