
DPGS Graph Summarization Preserves Community
Structure

L Durbeck
Virginia Tech
Dept. of ECE

ldurbeck @ vt.edu

Peter Athanas
Virginia Tech
Dept. of ECE

athanas @ vt.edu

Abstract—Community detection, or clustering, is an
NP-hard problem for which computationally efficient
approximations have long been sought. Methods have
sought a balance between accuracy, simplicity, latency,
and memory usage. In this paper, we assess whether a
recently developed graph summarization technique pre-
serves the underlying community structure of the graph.
The technique is Degree-Preserving Graph Summarization
(DPGS). It lossily encodes the graph using fewer nodes
and edges but does not assume a uniform distribution of
node degrees, as is common in most Minimum Description
Length-based GS methods. Instead, it strives to improve
the reconstruction model for graphs with realistic skewed
degrees using the configuration model. We show that
the supernodes produced by DPGS capture the latent
communities within the graph for a series of graphs with
known community structure, while reducing the graph
description length by 25%.

Index Terms—Computation (stat.CO); Graph parti-
tion; graph sparsification; graph summarization; MDL;
spectral graph theory; LOBPCG; spectral graph parti-
tioning; stochastic block models; community detection;
DARPA/MIT Graph Challenge

I. INTRODUCTION

Graphs can be used to represent the relationships be-
tween entities. For example, a social networking site such
as Facebook uses a large graph to represent the social
networks of its users, and then uses this information to
alert only certain people when a certain user posts new
content. A graph partition is a more compact encoding of
the data, in which the community-level structure of the
graph is preserved, with a several-fold reduction in the
number of edges used to describe the graph. A closely re-
lated problem is graph summarization, for which a more
compact encoding of the graph is sought—generally
without the requirement that the encoding preserves the
community structure of the original graph. In this paper
we examine a lossy graph summarization technique

from the general class of Minimum Description Length
(MDL) approaches that appears to apply naturally to the
separate problem of community detection. If this were
so, this could be a technique for providing a compressed
but high-fidelity encoding of the community structure,
along with information used to reconstruct the original
graph.

Graph partitioning is among NP-hard problems for
which exact solutions are too expensive to obtain because
no polynomial-time solution is known; instead, heuristics
are used to find clusters that approximate the optimal
solution sufficiently well. Modern phenomenal data pro-
duction rates from the digitization of most aspects of
human life make it desirable to have a simple, fast and
accurate graph partitioner along with convenient tools
for graph analysis.

The DARPA/MIT Graph Challenge (DGC) was envi-
sioned as a way to accelerate progress in graph structure
assessments such as graph isomorphism and graph par-
tition [8]. One of its contributions is a set of stochastic
block model-based (SBM) graphs, some with real-world
graph embeddings, along with vertex group labels, with
which researchers can develop new algorithms and val-
idate results. This also facilitates comparisons among
competing approaches in terms of their computational
efficiency versus the accuracy of their results.

The Streaming Stochastic Block Graph Challenge
(SGC) provides the above graph dataset, which contains
forty synthetic-real hybrid SBM graphs with power-
law degree distributions that reflect real-world graphs
and known community labels. The dataset includes both
static and streaming datasets for the graphs. It also
includes a graph generator; a baseline algorithm; scoring
functions against which researchers can benchmark their
progress; and a reference implementation of the baseline
in Python with which to begin.

The graph generator implements Karrer and New-

in IEEE High Performance Extreme Computing Conference HPEC 2021, © 2021 IEEE

man’s classic stochastic blockmodel [10] broadened to
represent a greater range of graphs using a hybrid
mixed-membership model (HMMB) of Kao [9]. The
graphs in the datasets provided for the SGC also include
embeddings of actual graphs that further increase their
realism.

This paper reports on efforts to apply the rigors of
comparison promoted by the SGC another step fur-
ther, into the closely associated research topic of graph
summarization—an area that is advancing rapidly be-
cause of its direct applicability to a hot topic, graph
neural network (GNN) sparsification to accelerate graph
mining.

This paper reports on a rigorous side-by-side compar-
ison of three candidate approaches and implementations:
• DPGS, a recent advancement in graph summariza-

tion that appears suitable [23];
• Peixoto, the SGC baseline based on Peixoto [8],

[18]; and
• LOBPCG, the fastest and most accurate sequential

approach demonstrated to date in SGC, based on
the LOBPCG spectral method [5], [24].

The paper is organized as follows. The Background
section briefly describes DPGS. The Related Work sec-
tions outlines the relevant research areas and provides
some motivation for the research; it also discusses other
approaches. The Approach section outlines the research
question and our approach to answering it. The Methods
section describes the experimental setup. The Experi-
ments and Results section presents specific evaluations
and characterizes the three algorithms relative to one
another. Discussion and Future Work summarizes the
work and suggests some specific ways in which it could
be extended.

II. BACKGROUND

Degree-Preserving Graph Summarization algorithm
(DPGS) by Zhou [23] is among the information-theory-
based graph summarization methods that use minimum
description length (MDL) as the principle to find a
summary graph while minimizing the total description
length. The description has two terms, the summary
graph and the errors or changes required to exactly
reconstruct the original graph. The algorithm seeks to
minimize the size of summary graphs and their recon-
struction error. Like many MDL-based methods, DPGS
uses a locality-sensitive hash (LSH) at each iterative
stage to divide the current set of supernodes into disjoint
groups, and performs greedy merging of the candidate
group-member nodes. In DPGS, the merging cost is

defined such that the effect is to consistently group nodes
that have similar neighbors, a property that further lends
to its suitability for graph clustering. The most unique
feature of DPGS is its novel reconstruction approach,
which informs both the second term used to reconstruct
the graph exactly and the later process of reproduction
of the graph. It is based on the configuration model that
assigns superedges proportional to node degrees. The
configuration model achieves lower reconstruction error
of the reconstructed adjacency matrix than the commonly
used scheme, uniform reconstruction, as measured by
the generalized KL-divergence error, a type of Bregman
divergence [4], [7]. Zhou shows theoretically that the
reconstruction approach bounds the perturbation of the
graph spectrum. The time complexity of DPGS is linear
in the number of node edges, O(T · |E|), where T is the
number of iterations of the algorithm’s main grouping-
merge loop, which is set by the user and is set to 30 by
default, and E is the set of graph edges.

III. RELATED WORK

A summary of approaches to community detection or
clustering can be found in Fortunato [6]. There are many
methods, often with different objectives and different
results. A general theory for objective functions for
clustering is not yet well characterized and the field is
still empirically driven. Many studies are still needed to
understand the underlying mechanisms that are responsi-
ble for the interactions of nodes in different graphs, see
for example [2], [6], [15], [19].

One community detection method that is particularly
suited to SBM-based graphs is a sequential imple-
mentation of a parallelizable Bayesian statistics-based
stochastic block partitioning method of Peixoto [8], [18].
SGC uses this method as its baseline algorithm. The
baseline partitioner from 2017 is accurate in its group
assignments, but slow: its time complexity order is
O(|E| · log2|E|) where E is the number of edges in
the graph.

One of the winners in the 2017 SGC competition is
a partitioner by Zhuzhunashvili and Knyazev that has at
its core the Locally Optimal Block Preconditioned Con-
jugate Gradient Method (LOBPCG) [24]. LOBPCG is a
mature implementation of a spectral method particularly
suited to sparse matrices and sparse graphs like those
of the SGC [24]. It performs spectral clustering, which
derives a partition from the eigen-decomposition of the
graph Laplacian matrix. Zhuzhunashvili’s partitioner has
a faster time order than the baseline. It has a time order

2

of O(|N | · k), where N is the set of nodes in the graph,
and k is the number of groups, or clusters.

This algorithm uses the locally-optimal block partition
conjugate gradient, a spectral clustering method devel-
oped by Knyazev in 2001 [12] that has been demon-
strated as a significant improvement to the tradition-
ally used Lanczos method. Zhuzhunashvili and Knyazev
showed the utility of this spectral clustering method
within the context of the SGC [24]. They reported
very high partition quality, with 99% or better accuracy
against the known truth partition, for both static and
streaming graph partition with the Challenge graphs, for
the 2017 SGC dataset of graphs of size 50,000 nodes
to 2M nodes, and found a 100-1000× speedup over the
baseline partitioner. They observed performance within
the experimental set of 2017 static graphs in line with the
time-order for the main underlying function, LOBPCG.

In our experiments using their techniques with the
more challenging 2020 datasets, however, partitioning
quality was seriously degraded with this approach—
down to 40% label accuracy in many cases. We pre-
viously demonstrated a solution to this problem [5].
One important difference is the formulation of the graph
Laplacian used. Our solution utilizes the normalized
Laplacian L = D−1/2WD−1/2 in a search for the
largest eigenvalues. Zhuzhunashvili used the nonnormal-
ized Laplacian L = D − W in search of the smallest
eigenvalues.

This had similar ultimate accuracy to what Zhuzhu-
nashvili and Knyazev reported, yet which also held for
the more challenging 2020 graphs. It also had the benefit
of converging to a near-optimal solution faster than
reported for the nonnormalized Laplacian L = D −W ,
typically reaching its solution at around Stage 3, or
30% of the graph edge data. Similar to Zhuzhunashvili
and Knyazev, we use the clusterQR method by Damle
[1] to assign labels based on the eigenvectors. Also
we set our initial guess of number of clusters l > k
and then run again with this output as the precondition
matrix, with the new number of clusters k set to the
first jump in values beyond the principle eigenvector.
We refer to this approach as LOBPCG′, reflecting that
it is Zhuzhunashvili and Knyazev’s approach with some
small but significant changes.

Graph summarization is a graph compression tech-
nique that can be used to reduce graph storage require-
ments or produce smaller input to other graph analysis.
LeFevre and Terzi first proposed graph summarization
based on the MDL principle [14]. Many improvements of
the two-term encoding of the MDL have been developed

by a number of researchers [13], [20]–[23]. Among
these, DPGS stands out as having a formulation most
closely aligned with the related but independent problem
of determining and preserving community structure. As
such, it appears most likely to exhibit good performance
in the crossover task of community detection.

Zhou [23] evaluated the description length produced
by DPGS for synthesized graphs generated from a ran-
dom model with a power-law degree distribution, using
power-law parameter α = −3.0,−3.5, and −4.0, for
graphs ranging in size from 500 nodes to 4,000 nodes.
They also evaluated DPGS reconstruction error, for eight
real-world graphs and for the F1-scores of the resulting
summary graphs in GNNs. They also demonstrated linear
scaling for the algorithm by running variously sized sam-
ples of their largest real-world dataset. They also provide
several comparisons with the commonly used uniform
reconstruction scheme vs the configuration model within
algorithms k-Gs and SSumM.

Our work is useful to the graph summarization re-
search community in that it extends Zhou’s time perfor-
mance assessment to a broader sample of graph sizes and
known structural properties, including summarization
of graphs with differing probability of overlapping, or
mixing, between groups, and low to high group size vari-
ation, and for a larger range of graph sizes, ranging up to
5 million nodes. Additionally, the present work evaluates
performance against a different problem, namely the
suitability of this graph summarization technique as a
community detection method, by assessing the quality of
the communities generated by DPGS. This is achieved by
scoring its supernode assignments against the expected
assignments for graphs with known ground truth.

IV. APPROACH

The hypothesis tested here is that several design fea-
tures of DPGS make it suitable as a community detection
or clustering algorithm, in addition to its intended func-
tion as a graph sparsification / summarization technique.
There are three aspects to suitability assessed here:

Partition quality: does the algorithm provide group
labels to nodes from the original graph convenient to
the community detection task at hand? Although the
definition of communities is not available for SGC [8],
the community detection task appears to be finding a
grouping within sparse graphs that maximizes intercon-
nectedness within groups while minimizing interconnect-
edness between groups. We define quality as being on
par with that produced by the SGC baseline algorithm,
or better.

3

Computational efficiency: does the partition occur
within an acceptable amount of time, and require an
acceptable amount of computing resources, such as
memory? We define that here as being no slower than
the baseline algorithm.

Practical barriers to use: does the approach require
computing resources readily available to its intended
users? For the purposes of this project we define the
target hardware as commodity systems that are readily
available to this project, no more expensive than a server-
class machine, and requiring no commercial software
licenses to conduct the experiments.

We assessed overall suitability of an algorithm to
community detection by fixing the hardware resources
across the board, then quantifying partition quality
and computational efficiency for graphs from the SGC
dataset that are of increasing size and varying structural
composition. We did so using forty graphs of varying
size and partitioning-task difficulty. We did the same
for two alternative approaches—one, the baseline, and
two, a mature/already-high-performing algorithm that
is the current reigning champion. This helps to better
understand the significance of the results.

V. METHODS

The algorithm implementations compared here are:
a) DPGS, the hard parts of which are implemented
in C++ and the rest in Python; b) the SGC base-
line, which is Kao’s 2017 Python implementation of
Peixoto’s approach [8], and c) a Python implementation
of LOBPCG′ that we describe in a previous publication
[5]. This implementation depends on the implementation
of lobpcg within the scipy Python scientific toolkit
[11].

A. Performance Metrics

Algorithms are assessed along two orthogonal axes
loosely construed as their cost in running time versus
their benefit in output quality. Whereas in graph sum-
marization this is judged as the description length of
the output, here it is instead assessed as how well the
algorithm found the latent structure within the graph, for
graphs with known truth partitions.

For partition quality, we scored the supernode as-
signments in the final DPGS output using an array of
metrics provided with the SGC that are based on the
labels’ commonalities with the expected group labels. In
all cases the evaluation first finds the mapping between
the algorithm’s designated group labels and those of the
known truth data.

SGC provides a comprehensive set of tools for assess-
ing partition quality. This work computes all the SGC
metrics described in Kao [8], in the convenient form
implemented within the SGC baseline support functions.
We report on only Accuracy here; however, these metrics
include pairwise precision and recall, mutual informa-
tion, and many other assessments. Accuracy is defined
as the fraction of nodes correctly partitioned, which is
the number matched of the algorithm’s results with the
true labels over the total number of nodes.

To achieve the goal of assessing algorithm compu-
tational efficiency, we tested the running time of the
algorithm on a server-class machine with half a terabyte
of memory that is characterized in Table I. Time was
collected for a version of the code that minimized input
and output (I/O), allowing merely input of the dataset
and running of the algorithm, no write-out of output or
informational messages and no evaluation of the results.

Time measurements reported here are true compu-
tational resource usage times, not elapsed wall clock
time. Times are reported for the entire execution time,
including loading and transforming inputs, and total
execution time is sys + user, all time spent on the
user’s behalf either within the code or within the kernel
reported by the Unix utility time.

In addition we evaluate the algorithms in terms of their
speedup over the baseline. Speedup here is as is typically
defined in terms of latency as t/W of the new algorithm
over t/W of the old, where t is the total execution time
and W is the workload.

Computational efficiency was also assessed as the
size of the problem increases, i.e. as the graph size
increases. This provides a measure of the scalability of
the algorithm; and we did so more systematically than
has been done before for DPGS by testing over a much
larger size range of graphs, and with controlled variation
of graph structure and task difficulty.

B. Datasets: Graphs with Known Group Labels

This work uses the SGC graph datasets described by
Kao [8]. The synthetic SBM graphs that are integral
to SGC have known partition label assignments, or
ground truth. The dataset contains multiple sets of graphs
differing in size but having similar characteristics to
one another, such as probability of inter- and intra-
cluster edges, maximum and minimum node degrees, as
well as groups with similar block size, between-block
interactions, and block size variation [3], [8]. Some have
real-world graph embeddings within them as well. These
do not contribute to the partition quality score. The

4

graphs range in size from 500 to 5M vertices. We worked
with both the original set of graphs from 2017 and those
released in 2020.

TABLE I
MACHINE PROPERTIES FOR EXPERIMENTATION

Memory size 512 GB
Cores 64
Processor AMD Opteron 6376
Clock Frequency 2.3 GHz
Floating point 64-bit double precision
OS CentOS Linux 7.9.2009
Python 3.6.9
scipy 1.5.0
gcc compiler 8.5.0
Boost library 1.77.0

C. Computing Resources

Experiments were carried out on a server-class ma-
chine with 512 GB of memory. The machine charac-
teristics are summarized in Table I for both hardware
and software. The large memory size allowed us to run
LOBPCG′ against the 2 million- and 5 million-node
graphs without needing to employ its more-complex
block handling capabilities. This machine was unable to
run the baseline algorithm in Python to completion on
graphs larger than 50,000 nodes in a reasonable amount
of time. It was able to run DPGS on graph sizes up to
1-2 million nodes. Graphs toward the upper end of an
algorithm’s capabilities generally took months of wall-
clock time.

VI. EXPERIMENTS & RESULTS

The accuracy, time usage and time-complexity of
each algorithm were evaluated using graphs with known
partition solutions. Typically, three trials were performed
for each experiment. Figure 1 shows the results for
the three algorithms broken down by the fundamental
structural classes of graphs within the dataset.

DPGS typically produces a good partition of the
graph, roughly in line with the baseline algorithm’s per-
formance, producing around the same number of clusters
as expected. Further, DPGS performance did not suffer
much as the task difficulty increased. It often provides
acceptably high performance for less structured graphs
such as ones with a high degree of mixing between
groups (sets HL and HH), and a high variation in group
size (sets LH and HH). DPGS performance deteriorated
a bit slower than that of the baseline as the task difficulty
increased. For both the Peixoto-based baseline partitioner

and DPGS, however, performance is not nearly as high
as what we consistently observed for LOBPCG′.

Whereas Figure 1 reports on the results aggregated
by graph type, Figure 3 provides more detail on the
performance of DPGS as it relates to graph difficulty
and graph size. The supernodes chosen by DPGS pro-
vide very high fidelity representation of the community
structure for the graphs with low block overlap and low
block size variation, which are the 2017 dataset and the
LL graphs of various sizes from the 2020 dataset. Of
the graphs that completed in a reasonable time, accuracy
was typically 75% or better. The algorithm performance
drops off precipitously, however, on the 200K node
graph, especially for the case of both high block size
variation and high overlap. The runs we performed for
larger graphs in these sets HL, LH and HH have not
completed yet in the two months we have been running
them on the test machine. This performance dropoff in
both time and partition quality is a point to be investi-
gated further. It could be a limit within the algorithm,
but it may be an artefact of the implementation rather
than the algorithm—a result of parameter settings and
of inherent constraints within the DPGS implementation,
for example, given how much larger these graphs are
than those for which it was originally implemented and
demonstrated.

We used the default parameter settings for the DPGS
algorithm except for the number of iterations, which

Fig. 1. Output quality for the three algorithms. Shown is average
accuracy per class of graph. Task difficulty increases from left to
right. Classes are the 2017 dataset, and the four kinds of graphs in
the 2020 dataset: low overlap, low block size variation graphs (LL),
low overlap, high block size variation graphs (LH), and so on. Only
the runs that completed in a reasonable amount of time are presented.

5

we found defaulted to too low a value for these large
graphs. We experimented with the ideal setting for turns
for several graphs and arrived at a rough rule of thumb
that |N |/20, where N is the number of nodes in the
graph, provided the algorithm sufficient iterations to
merge groups into roughly the number of clusters present
in the labeled data. Runs used parameter settings of 8
hash bins, 42 as the random seed, and |N |/20 iterations.

We observed two outliers for which DPGS produced
an undesirably large supernode graph in its MDL de-
scription of the graph. Of the two, one was brought
into line with the predicted number of groups simply
by specifying a larger number of turns. For the other,
the 200K-node HH graph that is the lowest accuracy
shown in Figure 3, we experimented with many possible
parameter settings to try to improve the quality of the
output, but the results appeared robust against parameter
settings. In each case, the supernode graph showed little
reduction, containing about 90% of the nodes of the
original graph. Description length also was not reduced;
instead, it was slightly larger than the original graph
description. This implies that we were not seeing a result
of graph summarization optimization.

The time complexity of DPGS was previously reported
to be linear in the number of node edges, O(T · |E|),
where T is the number of group-merge iterations set
by the user and E is the set of graph edges. We set
T to |N |/20. All of this leads to the expectation that
DPGS will produce runtimes in between the baseline
and LOBPCG′. We would expect it to run typically

Fig. 2. Algorithm speed and scalability as graph size increases. Only
those experiments that completed in a reasonable amount of time are
shown. Both graph size and time used are displayed on a logarithmic
scale. Time is defined in the section on Performance Metrics.

Fig. 3. DPGS algorithm accuracy further broken down for each graph
in the 2020 dataset. Shown are the 2017 dataset, and the four kinds
of graphs in the 2020 dataset: low overlap, low block size variation
graphs (LL), low overlap, high block size variation graphs (LH), and
so on. Accuracy exhibits a dropoff for the harder of the 200,000-node
graphs. Runs for the larger sizes of (LH, HL, and HH) graphs took
an unreasonable time to complete and are not shown.

significantly slower than LOBPCG′, which has time-
order O(|N |·k) where k is the number of clusters and N
is the set of graph nodes, but faster than Peixoto, which
has time-order O(|E| · log2|E|).

Figure 2 shows a log-log plot of the experimental
results we observed on the test machine for the three
algorithms. Timing results roughly correspond with the
reported time orders of the algorithms. Both Peixoto
and DPGS appear linear in the number of edges of
the graph. LOBPCG′ is sublinear in |E|, with a larger
constant factor for smaller graphs. More-complex graphs
generally take longer for all three algorithms. We find
that over the range of graph sizes that run within a few
weeks, DPGS is consistently 20× faster than the DGC
baseline across the range of graph sizes and typically
an order of magnitude slower than LOBPCG′ except
for very small graphs, for which DPGS is faster than
LOBPCG′.

A. Additional Time Performance Assessments

For DPGS, the experiments use a Python implemen-
tation that calls the C++ compiled binary, whereas for
Peixoto the algorithm we used is completely written in
Python. This could bias the results toward DPGS for
reasons other than algorithmic ones. This is also not the
fairest comparison possible, given that C++ implemen-
tations exist for both Peixoto and LOBPCG that take

6

advantage of Boost acceleration and other specialized
libraries.

We addressed this uncontrolled-for contribution to
the timing results partially but not fully. For tim-
ing comparisons we also conducted experiments with
the C++ version of the Peixoto algorithm. For these
time performance runs, the C++ implementation of
DPGS was compared against the Python implementa-
tions of the baseline and LOBPCG′. For instance, the
baseline C++ code in the SGC github calls a func-
tion minimize_blockmodel_dl [17] which wraps
the underlying function multilevel_mcmc_sweep.
These are implemented within the inference li-
brary of graph-tool [16]. The function performs
a user-specified number of multilevel agglomerative
acceptance-rejection MCMC sweeps to sample network
partitions and a bisection search on the number of
groups along with group merges and singe-node moves.
Although these functions are‘ callable inside Python, all
the hard parts are implemented in C++. Graph-tool
makes use of the Boost libraries and other optimized
codes to run functions such as these efficiently.

We decided to try running the C++ Peixoto algorithm
in its current 2021 form, within the latest release of
graph-tool, which is Version 2.43. There were some
practical barriers to this, however. After a week of effort
installing graph-tool and all the dependencies on the
target CentOS machine described in Table I without root
access or a package manager, we were unable to run it
without errors.

We succeeded in running these functions from
graph-tool on a lesser machine for which we had
the necessary accesses and resources (4-processor Intel
i5-4670K CPU at 3.40GHz; 32 GB memory; Linux Hera
5.1.7). Despite being able to run the C++ version of the
algorithm on this machine, the outputs did not correctly
infer the modular graph structure. We learned that the
current interface to the Peixoto library function did not
allow setting some of the key parameters present in the
SGC Python baseline, such as telling the algorithm to
run multiple sweeps but stop when the entropy does
not change (the maximum number of iterations and the
stopping criterion ε). The degree-correctedness of the
graph was buried another level or two further below the
interface provided by minimize_blockmodel_dl.
It may be that the 2017 version of the function had
exposed these factors, but the contemporary version does
not. We were unable to find parameter settings that re-
sulted in a graph partition with fewer than b ≈ N blocks.
Given this unacceptable output quality, a comparison

with the C++ version of Peixoto’s algorithm was not
possible.

The remaining point of comparison available was to
evaluate the constant factor time difference between
one iteration of the block model inference function
within graph-tool and the DGC baseline reference
implementation in Python. This is useless, of course, to
extrapolate a performance factor for the C++ version,
unless one assumes it could be run with some settings
that produced a good partition and that the underlying
algorithm was still substantially the same as the one in
the Python baseline. We assessed this constant factor
difference for one iteration of each algorithm, after
setting both to perform the MCMC sweep once, and then
running both across the tractable sizes of graphs within
the dataset, up to 50K nodes, for all graphs in the 2017
and 2020 datasets. This first MCMC sweep in the C++
version took on average a tenth of the cycle time of the
Python code or 10× Speedup, and the performance gap
appeared to increase with graph size.

VII. DISCUSSION & FUTURE WORK

This work provides more insight into the perfor-
mance of a new graph summarization method, DPGS,
by extending the set of graphs to which it has been
applied, resulting in more empirical information about
its compression ratio and runtime performance. It also
evaluates the method in a different context from those
explored before by evaluating its usage for community
detection, or clustering. In doing so, it puts the results
into the context of existing graph community detection
methods and implementations by comparing DPGS’s
performance with prominent alternatives.

We apply a graph summarization method, DPGS,
that lossily encodes the graph using fewer nodes and
edges while maintaining key properties of the original
such as the eigenspace of the graph Laplacian within a
bounded error. The algorithm does so by a combination
of design elements demonstrated and/or formally proven
by Zhou, such as a) preferentially merging supernodes
that share edges; b) capturing the skewed degrees of
real-world graphs; and c) preserving the spectrum of the
Laplacian of the original graph within a KL-divergence
bound. While these are design features whose primary
intended reason is to improve the graph reconstruction
model for lossy MDL-based graph summarization, we
show here that they also create a summarization that
preserves the latent communities within the graph, for
the DARPA/MIT Graph Challenge streaming stochastic
block partition dataset, which are synthetic SBM graphs

7

with some hybridization with real-world graphs, with
realistic power-law degree distributions in the range
between -3 and -2, and known community labels.

We find that DPGS produces a supernode graph that
preserves the community structure of the graphs in an
order of magnitude less time than the Graph Challenge
baseline partitioning method, at 20× Speedup across
graphs ranging from 1,000 to 2 million nodes in size.
Our results provide evidence that the first term of its
output MDL summarization is a suitable more-compact
representation of the community structure of the graph
for similar graphs, It appears that the degree-preserving
features of DPGS are also preserving the community
structure of the graph as a whole. The summarization
produced a representation of the original graph that
averaged 75.4% of the original graph description length
across the set of forty graphs.

Future work includes identifying the causes of the
performance dropoff we witnessed in using DPGS for
”difficult” graphs beyond a certain size, experimentation
with the DPGS algorithm to further enhance its com-
munity detection capabilities and its ability to handle
very large graphs, and an all-C++ time comparison, with
a C++ implementation of LOBPCG and the baseline
algorithm.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Andrei Knyazev and
Houquan Zhou for helpful information and discussions
and the anonymous reviewers for helpful comments. This
research was supported in part by an appointment to
the Intelligence Community Postdoctoral Research Fel-
lowship Program at the National Institute of Standards
and Technology (NIST), administered by Oak Ridge
Institute for Science and Education (ORISE) through
an interagency agreement between the U.S. Department
of Energy and the Office of the Director of National
Intelligence (ODNI).

REFERENCES

[1] Anil Damle, Victor Minden, and Lexing Ying. Robust
and efficient multi-way spectral clustering. arXiv preprint
arXiv:1609.08251, 2016.

[2] Vinh Loc Dao, Cécile Bothorel, and Philippe Lenca. Commu-
nity structure: A comparative evaluation of community detec-
tion methods. Network Science, 8(1):1–41, 2020.

[3] DARPA/MIT. Data sets | graphchallenge. Graph Challenge
Website https://graphchallenge.mit.edu/data-sets, 2016.

[4] Inderjit S Dhillon and Suvrit Sra. Generalized nonnegative
matrix approximations with bregman divergences. In NIPS,
volume 18. Citeseer, 2005.

[5] L.J.K. Durbeck and P. Athanas. Incremental streaming graph
partitioning. In 2020 IEEE High Performance Extreme Com-
puting Conference (HPEC), pages 1–8, 2020.

[6] Santo Fortunato. Community detection in graphs. Physics
reports, 486(3-5):75–174, 2010.

[7] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang
Tong, Sugato Basu, Leman Akoglu, Danai Koutra, Christos
Faloutsos, and Lei Li. Rolx: structural role extraction & mining
in large graphs. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 1231–1239, 2012.

[8] Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones,
Jeremy Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert
Reuther, Siddharth Samsi, William Song, et al. Streaming
graph challenge: Stochastic block partition. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–
12. IEEE, 2017.

[9] Edward K Kao, Steven Thomas Smith, and Edoardo M Airoldi.
Hybrid mixed-membership blockmodel for inference on realis-
tic network interactions. IEEE Transactions on Network Science
and Engineering, 6(3):336–350, 2018.

[10] Brian Karrer and Mark EJ Newman. Stochastic blockmodels
and community structure in networks. Physical review E,
83(1):016107, 2011.

[11] A Knyazev. Locally optimal block preconditioned conjugate
gradient method (lobpcg). Scipy.org https://docs.scipy.org/
doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html,
2020.

[12] Andrew V Knyazev. Toward the optimal preconditioned eigen-
solver: Locally optimal block preconditioned conjugate gradient
method. SIAM journal on scientific computing, 23(2):517–541,
2001.

[13] Kyuhan Lee, Hyeonsoo Jo, Jihoon Ko, Sungsu Lim, and Kijung
Shin. Ssumm: Sparse summarization of massive graphs. In Pro-
ceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 144–154, 2020.

[14] Kristen LeFevre and Evimaria Terzi. Grass: Graph structure
summarization. In Proceedings of the 2010 SIAM International
Conference on Data Mining, pages 454–465. SIAM, 2010.

[15] Leto Peel, Daniel B Larremore, and Aaron Clauset. The ground
truth about metadata and community detection in networks.
Science advances, 3(5):e1602548, 2017.

[16] Tiago Peixoto. Graph tool: Efficient network analysis.
Skewed.de http://graph-tool.skewed.de/ , 2021.

[17] Tiago Peixoto. Inferring modular network structure. Skewed.de
https://graph-tool.skewed.de/static/doc/demos/ inference/
inference.html#the-stochastic-block-model-sbm, 2021.

[18] Tiago P Peixoto. Efficient monte carlo and greedy heuristic for
the inference of stochastic block models. Physical Review E,
89(1):012804, 2014.

[19] Carey E Priebe, Youngser Park, Joshua T Vogelstein, John M
Conroy, Vince Lyzinski, Minh Tang, Avanti Athreya, Joshua
Cape, and Eric Bridgeford. On a two-truths phenomenon in
spectral graph clustering. Proceedings of the National Academy
of Sciences, 116(13):5995–6000, 2019.

[20] Matteo Riondato, David García-Soriano, and Francesco Bonchi.
Graph summarization with quality guarantees. Data mining and
knowledge discovery, 31(2):314–349, 2017.

[21] Kijung Shin, Amol Ghoting, Myunghwan Kim, and Hema
Raghavan. Sweg: Lossless and lossy summarization of web-
scale graphs. In The World Wide Web Conference, pages 1679–
1690, 2019.

8

[22] Quinton Yong, Mahdi Hajiabadi, Venkatesh Srinivasan, and
Alex Thomo. Efficient graph summarization using weighted
lsh at billion-scale. In Proceedings of the 2021 International
Conference on Management of Data, pages 2357–2365, 2021.

[23] Houquan Zhou, Shenghua Liu, Kyuhan Lee, Kijung Shin,
Huawei Shen, and Xueqi Cheng. Dpgs: Degree-preserving
graph summarization. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pages 280–
288. SIAM, 2021.

[24] David Zhuzhunashvili and Andrew Knyazev. Preconditioned
spectral clustering for stochastic block partition streaming graph
challenge (preliminary version at arxiv.). In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages
1–6. IEEE, 2017.

9

