
Incremental Streaming Graph Partitioning

Lisa Durbeck
Virginia Tech
Dept. of ECE

ldurbeck @ vt.edu

Peter Athanas
Virginia Tech
Dept. of ECE

athanas @ vt.edu

Abstract—Graph partitioning is an NP-hard problem
whose efficient approximation has long been a subject
of interest. The I/O bounds of contemporary computing
environments favor incremental or streaming graph parti-
tioning methods. Methods have sought a balance between
latency, simplicity, accuracy, and memory size. In this
paper, we apply an incremental approach to streaming
partitioning that tracks changes with a lightweight proxy
to trigger partitioning as the clustering error increases.
We evaluate its performance on the DARPA/MIT Graph
Challenge streaming stochastic block partition dataset, and
find that it can dramatically reduce the invocation of
partitioning, which can provide an order of magnitude
speedup.

Index Terms—Computation (stat.CO); Graph partition;
graph sparsification; spectral graph theory; LOBPCG;
spectral graph partitioning; stochastic blockmodels; incre-
mental partitioning; community detection

I. INTRODUCTION

Graphs are a species of big data that is partic-
ularly suited for representing relationships between
entities. For example, a graph of a social network
describes friendships and kinship. A graph partition
is a more compact encoding of the data, in which the
community structure of the graph is preserved, with
a several-fold reduction in edges. Graph partition is
among NP-hard problems for which exact solutions
are too expensive to obtain because no polynomial-
time solution is known; instead, people have devel-
oped heuristics to find clusters that approximate the
optimal solution sufficiently well.

Today’s phenomenal data production rates make
it desirable to have a simple, fast and accurate
graph partitioner along with convenient tools for
graph analysis. The DARPA/MIT Graph Challenge
(DGC) was envisioned as a way to accelerate
progress in graph structure assessments such as
graph isomorphism and graph partition [9]. One of

its contributions is a set of graphs along with vertex
group labels with which researchers can develop
new algorithms and validate results. This also fa-
cilitates comparisons among competing approaches
in terms of their computational and memory cost
versus their accuracy of results. Facilitating this
further is a graph generator, and a baseline algorithm
and scoring functions against which researchers can
benchmark their progress, and a code base in C++
or Python with which to begin. Within the larger
DGC, which contains several challenges since 2017,
this work focuses on the Streaming Graph Chal-
lenge (SGC), a challenge for graph partitioning that
includes both static and streaming datasets of syn-
thetic stochastic blockmodel-based (SBM) graphs.

This paper reports on efforts to advance progress
further within the SGC by augmenting the fastest
approach demonstrated to date by incorporating
recent and complementary progress in incremental
partition for time-varying graphs by Charisopoulos
[2]. Partitioning is an expensive operation; we seek
to reduce calls to the partitioner without impacting
the partition quality. The approach takes advantage
of intrinsic properties of the graph to track graph
edge insertions and deletions, and indicate when
the set of updates may cause a change to the
community structure of the graph. When it does not,
we retain the group labels from the prior partition—
conserving partition cycles while tracking the opti-
mal group assignments within an error tolerance ε.

To better pinpoint the source of speedup we
derive an expression for the rate of consumption of
edge updates by the enhanced partitioning pipeline
and show that under certain conditions it can pro-
duce an impressive speedup over the work/time of
the partitioner, especially as the number of batches
of updates increases. We experimentally verify these

in IEEE High Performance Extreme Computing Conference HPEC 2020, © 2020 IEEE

estimates for SGC SBM graphs with known parti-
tion labels.

The paper is organized as follows. The Back-
ground section outlines related work in graph par-
titioning motivating the approach used here, as
described in the Approach and Methods section. The
Experiments and Results section describes specifics
on the datasets and computing environment, and the
performance of the approach relative to the baseline
and to the most relevant related work. Discussion
and Future Work summarizes the work and suggests
how it could be extended.

II. BACKGROUND

Many common development frameworks use the
most rudimentary of the lightweight streaming par-
titioning techniques pioneered by Stanton and Kliot,
still, such as hashing on node index [16]. Yet there
are many potential benefits to approaches that trade
some simplicity for greater computational or storage
efficiency. A summary of approaches can be found
in Fortunato [7].

Global approaches to graph partition rely on
properties of the entire graph. The most common
examples are spectral partitioning, which derives
a partition from approximate eigenvectors of the
adjacency matrix [8], and spectral clustering, which
derives it using the eigen-decomposition of the
graph Laplacian matrix [1], [14]. These were first
developed in the 1960s and 70s, and took their
modern form in the 1990s. Their major drawback
is that the necessary access to information about
the full graph may not be possible in practice for
very large graphs—a drawback addressed to some
degree in the current work by the use of a matrix-
free method by Knyazev that does not require the
explicit storage of the adjacency matrix [10].

The DGC baseline for streaming graph partition
for stochastic block models (SBM) is a sequen-
tial implementation of a parallelizable Bayesian
statistics-based stochastic block partitioning method
of Peixoto [9], [13]. The baseline partitioner is
accurate in its group assignments, but slow: its time-
order is O(E · log2E), where E is the number of
edges in the graph.

One of the winners in the 2017 SGC compe-
tition is a partitioner based on Locally Optimal
Block Preconditioned Conjugate Gradient Method,

or LOBPCG by Zhuzhunashvili and Knyazev [17].
LOBPCG is a spectral method particularly suited
for sparse matrices and sparse graphs like those of
the DGC stochastic block challenges [17]. LOBPCG
has a faster time-order than the baseline of O(N ·k),
where N is the number of nodes in the graph, and
k is the number of groups, or clusters.

We confirmed these earlier-reported time-orders
for both the Peixoto and Knyazev methods in the
course of our experiments with SGC static graphs
of sizes ranging from 50 nodes to 5 million nodes
that were released for the challenge in 2017 or
2020. Since LOBPCG’s time-order is a significant
improvement over the baseline and gives similar
accuracies, at least for the low-block-size, low-
variation graphs within SGC, we based our exper-
iments on seeing whether these ideas improve the
performance of LOBPCG further.

LOBPCG is an efficient spectral clustering
method. Other methods of spectral partitioning may
be desirable in other situations. Spielman and Teng
present a single-pass, local partitioning algorithm
also based on spectral clustering using the eigen-
values of the graph Lapacian [15]. Their method
uses O(N + E) storage and O(E) time where E
is the number of edges of the graph, and N the
number of nodes. LOBPCG has a smaller time-
order and space-order due to the advantage of being
a matrix-free method that does not require storing
the graph coefficient matrix explicitly; instead, it
can access the matrix by evaluating matrix-vector
products [10].

To our knowledge, incremental partitioning was
first introduced by Ou and Ranka, within the context
of adaptive finite element meshing [12]. They ob-
served that, for a class of problems such as adaptive
finite element meshing, where continuous updates to
the graph are occurring, the number of updates to
the partition assignment at any given time is small
relative to the size of the graph. They called this
the incremental graph partitioning problem. They
assigned partitions to graph updates using a simple
local graph-distance-based metric.

A similar observation motivates Charisopoulos
within the context of evolution of time-varying
SBM graphs [2]. They developed a proxy for the
Davis–Kahan bound on the subspace distance within
updates to a graph adjacency matrix that serves

2

to characterize graph updates succinctly in terms
of distance from a spectrum threshold, within an
incremental approach to spectral estimation, using
subspace iteration for block Krylov methods. This
provides a bound on the error for the accuracy of the
subspace used to make the partition assignments.

We use a relevant distance metric for SBMs
they derived and proved that requires access to
degree information from the prior partition, and
degree information within the current batch of graph
updates [2].

Our partitioning algorithm is depicted in Figure
1 as a state machine. It functions similarly to
Algorithm 3.1 in Charisopoulos [2]. The system
has two states and three transitions; first, an ac-
cumulation state in which the low-cost distance
metric corresponding with Equation 6 is periodically
checked, and second, transition to a partitioning
state in which the eigenvalues and eigenvectors
are recalculated, after which the system returns to
the accumulation state until the proxied-subspace
distance is further than a distance of ε from the
subspace generated in the prior partition cycle. In
this way the partition label assignments remain
within an error distance of ε from their true current
values. This has the important feature of suppress-
ing updates that do not substantially improve the
subspace distance.

The distance metric we used is one formulated
and demonstrated by Charisopoulos for gradually-
evolving SBMs [2]. It provides a lightweight dis-
tance calculation for approximating the subspace
update, and one more appropriate to sparse graphs
than the usual 2-norm or spectral norm of the graph
update matrix. Calculating this distance permits
us to determine whether a batch of one or more
updates has gotten too far away from the prior
computed eigenvalues without actually recomputing
the eigenvalues, which is far costlier in computation
and memory usage than computing d repeatedly.

We note that although the original equations
depend minimally on aspects of the graph spectrum,
the proxy does not depend upon anything that is not
an intrinsic property of the graph easily obtained
within any system that has access to the graph,
regardless of whether it uses a spectral partition-
ing method. In particular, their use of the leading
eigenspace leads to a maximum eigenvalue of 1 true

Fig. 1. State machine representation of algorithm as a process. The
algorithm from a data view is encapsulated in Equation 5.

for all symmetric adjacency matrices [11]. We use
this fact to set d = 1 and solve Equation 7 for α.

III. APPROACHES & METHODS

To define the partitioning problem in general,
given a graph with no group labels associated with
any node, the goal is to produce accurate group
label assignments for each node in the graph. An
additional assumption for the present work is that
the problem is an incremental partition problem. In
such a case, the graph is revealed to the algorithm
over time; it does not possess all the information
about graph nodes and edges at the outset, and
must produce the best group labels it can with the
information it has at any specific time t, generally
associate with the arrival of a new batch of graph
nodes and/or edges.

To more formally define the incremental partition
problem, we present the following terms. Let G
represent a graph as follows:

G = (N,E) (1)

where N is the set of nodes or vertices and n is
a node; E is the set of edges, e is an individual
edge of the graph, and ei are the edges associated
with node i. Let P be the set of partitions of G that
we are seeking to generate by the method, of which
there are a total of k, or P = (p1, p2, . . . , pk). Each
pi is a subset of G, and each vertex appears in at
most one pi.

The class of solvers this work focuses on is what
has been termed stateful streaming by Kao [9]. That
is, given a graph G, and the goal of evaluating a
partitioning function f(G), at the addition of an

3

additional smaller graph g, the goal is to evaluate
the function

f(G+ g) (2)

where G is the already-partitioned portion of the
graph, and g is the new input to the partitioner. The
intention is that f uses information about G in its
assessment of g, unlike stateless streaming, in which
f(g) occurs without consideration of prior partition
results from G.

More specifically, given a local partition function
h and a global partition function j, the proposed
method evaluates the composition

P = j(h(G+ di)) (3)

where di is the latest token in the input stream. The
tokens in the test cases used here are typically a
batch of edge insertions that may introduce new
nodes to the graph, but more generally they can be
g, a new subgraph added to G; or they can be a set
of node- or edge insertions or deletions, in the case
of a temporally-varying graph.

The function j() simply returns h(G+ di) unless
a global repartitioning criterion is met. The reparti-
tioning criterion can be as simple as

|G| mod c (4)

where c is heuristically derived; or, the criterion
could be based on an independent assessment of
the quality deterioration of P , run in tandem or in
parallel with the streaming partition, as it is in the
present work. In the present work, Equation 3 is
equivalent to

P = S1(S0(G+ di)) (5)

That is, the local partitioner h() is simply an
accumulator and does not re-partition; h is achieved
by the S0 node of Figure 1 and its actions, and
j() is achieved by the S1 node, i.e. partition of G
along with di, the set of insertions and deletions
to the adjacency matrix of G. As in incremental
partitioning, the global partitioner of the function
j serves as the more-accurate partitioner that is
invoked to limit the accumulation of error associated
with local-information-based updates to P .

The partition assignment P is continually pro-
duced by a constant-time streaming partitioner that
is periodically rebalanced by the results of a highly
accurate linear-time global spectral method used for
j(), with much more limited information used in the
interim by h().

For the repartitioning criterion, this work investi-
gates the utility of the distance proxy of Charisopou-
los [2] that was designed with SBMs in mind,
envisoning the evolution of a graph via incoming
graph updates. They derive a simple bound on the
accuracy of the computed block Krylov subspace
of a graph matrix under streaming edge updates
that bounds the error for the accuracy of the lead-
ing subspace used to make partition assignments.
Proposition 4.1 of their derivation and its corollaries
provide the following distance criterion for the set
of changes to the graph since the last partition at
time t:

1

ρ(At)
≥ ε ≥ d (6)

where ρ(At) is the spectral radius of the graph
corresponding with the maximum eigenvalue,

d = α + κα +
α

(1 + α)2
(7)

for which κ is based on the current largest and
smallest node degrees in the most recent graph
partition at time t, in magnitude, irrespective of edge
direction,

κ =

√
degmax(G)

degmin(G)
(8)

and α is similarly based on the largest change in
node degree from the current set of graph updates.
Given the edge insertions and deletions in g, α is set
once per batch, or di, to the maximum ratio within
the graph of edge insertions and deletions to any
node relative to its former state at time t

α = max

(
|ei ∈ g|
|ei ∈ G|

)
(9)

over all i ∈ g. Note that |ei ∈ G| is no different
from the degree of node i at time t but written here
to correspond with the changes in di. Charisopoulos
discusses and demonstrates the order-of-magnitude

4

TABLE I
MACHINE PROPERTIES FOR EXPERIMENTATION

Memory size 512 GB
Cores 64
Processor AMD Opteron 6376
Clock Frequency 2.3 GHz
Floating point 64-bit double precision
Python 3.6.9

increase in triggers to partition that this results in
over a change criterion based on the 2 norm of the
changes to the adjacency matrix, i.e. At+1 − At;
however, they argue that this stricter partitioning
criterion tracks changes better in sparse graphs.
This is the formulation of the change criterion used
here, and the distance d in Figure 1. Since the
leading eigenvalue of the normalized Laplacian is
1 for symmetric adjacency matrices, the triggering
criterion reduces to testing whether d < 1.

The global function this work investigates is
locally-optimal block partition conjugate gradient,
a spectral clustering method developed by Knyazev
in 2001 [10] that has been demonstrated as a signif-
icant improvement to the traditionally used Lanczos
method. Zhuzhunashvili and Knyazev demonstrated
the utility of this spectral clustering method within
the context of the SGC [17]. They reported very
high partition quality, with 99% or better accuracy
against the known truth partition, for both static
and streaming graph partition with the Challenge
graphs, for the 2017 SGC dataset of graphs of size
50,000 nodes to 2M nodes, and found a 100-1000×
speedup over the baseline partitioner. These are the
best speedup results to date in this public challenge,
by an order of magnitude or more. They observed
the performance within the experimental set of static
graphs to be O(n · k).

Local optimality implies that LOBPCG will con-
verge on a solution at least as fast as the gradient
descent method, and this has been both theoretically
guaranteed and practically observed [10]. For the
SGC datasets, Zhuzhunashvili and Knyazev found
convergence occurred three times faster at later
stages in the stream processing, for which the partial
results from earlier stages provided a better initial
seed than the random one used in initial stages [17].
Our implementation employs this seeding, or warm
start as well.

This work uses the DARPA-MIT Stochastic
Streaming Graph Challenge metrics to assess the
methods described in Kao [9], in the convenient
form implemented within the SGC baseline support
functions. These metrics include pairwise precision
and recall, and overall accuracy, defined as the
percentage of nodes correctly partitioned, which is
the percent match of the algorithm’s results with the
true labels. In all cases the evaluation first finds the
mapping between the algorithm’s group labels and
those of the known truth data.

In addition we evaluate our algorithm in terms
of its speedup over the baseline, and over our
implementation of Zhuzhunashvili and Knyazev’s
LOBPCG-based approach with and without our
modification based on Charisopoulos’ repartition
criteria. Speedup is typically defined in terms of
latency as t/W of the new algorithm over t/W
of the old, where t is the total execution time and
W is the workload. Here we report t in number
of cycles, where a cycle is defined as a call to
the partitioner and labeler. Times are reported for
the entire execution time, including loading and
transforming inputs, and total execution time is
sys+user, all time spent on the user’s behalf either
within the code or within the kernel reported by the
Unix utility time.

The synthetic SBM graphs that are integral to
SGC have known partition label assignments, or
ground truth. The dataset contains multiple sets of
graphs differing in size but having similar charac-
teristics to one another, such as probability of inter-
and intra-cluster edges, maximum and minimum
node degrees, as well as groups with similar block
size, between-block interactions, and block size
variation [4], [9]. They range in size from 500 to
5M vertices. We worked with both the original set
of graphs from 2017 and those released in 2020.

IV. EXPERIMENTS

The accuracy and time-complexity of the pro-
posed approach was evaluated using graphs with
known partition solutions. Typically, three to ten
trials were performed for each experiment; the re-
sults represent the mean. Charisopoulos’ approach
maintains the accuracy of the subspace used to
make partition assignments within a small tolerance
ε of the previous partition results as edge updates

5

TABLE II
MEAN ALGORITHM PERFORMANCE MEASUREMENTS, FOR GRAPHS GROUPED BY GRAPH SIZE, FOR THE BASELINE P (PEIXOTO)

ALGORITHM VERSUS L (ENHANCED-LOBPCG) ALGORITHM.

GRAPH
|N |
|E| ALG

5K

100K

20K

400K

50K

1M

200K

5M

1M

24M

2M

41M

5M

230M

TIME (s) P 1,373 16,868 80,893

L′ 196 463 898 3,658 28,642 107,591 404,986

SPEEDUP L′ 7.0 36.4 90.1

ACCURACY P 0.77 0.85 0.80

L′ 0.99 1.00 1.00 1.00 1.00 1.00 1.00

PAIRWISE P 0.86 0.89 0.68

PRECISION L′ 0.99 1.00 1.00 1.00 1.00 1.00 1.00

PAIRWISE P 0.78 0.86 0.93

RECALL L′ 0.99 1.00 1.00 1.00 1.00 0.99 1.00

come in. We took a batched approach to inputs,
but varied batch size from the given |E|/10 in the
emergingEdges dataset downward to arbitrary
sizes as low as two graph updates per batch. After
each batch, we use our simple proxy for right-sizing
the next batchsize as the process moves through the
input stream, and we trigger repartition when either
that amount of input has been consumed, or when
an individual node’s accumulated changes triggers
a repartition.

Similar to Zhuzhunashvili and Knyazev, we use
the clusterQR method by Damle [3] to assign labels
based on the eigenvectors. One important difference
is the formulation of the graph Laplacian used.
Since Charisopoulos’ formulation is based upon
the largest eigenvalues, we follow their assump-
tions, including the use of the normalized Laplacian
L = D−1/2WD−1/2 in a search for the largest
eigenvalues. This had similar ultimate accuracy to
what Zhuzhunashvili and Knyazev reported, which
held for the more challenging 2020 graphs. It has
the added benefit of converging to a near-optimal
solution faster than they reported for the nonnor-
malized Laplacian L = D −W , typically reaching
its solution at around Stage 3, or 30% of the graph
edge data.

Experiments were carried out using Python im-
plementations of the algorithms on a server-class
machine with 512 GB of memory. The machine

TABLE III
MEAN REPARTITIONING CYCLES FOR THE LOBPCG ALGORITHM

BEFORE AND AFTER AUGMENTATION. SPEEDUP, PREDICTED
SPEEDUP, AND THEIR RELATIVE DIFFERENCE.

LOBPCG LOBPCG′ REL.
CYCLES CYCLES SPEEDUP PREDICTED DIFF

101 20 0.49 0.78 0.37
102 30 3.37 3.92 0.14
103 36 27.52 26.12 0.05
104 43 234.38 195.89 0.20
105 46 2,153.85 1,567.15 0.37
106 50 19,867.55 13,059.55 0.52

characteristics are summarized in Table I. The mem-
ory size allowed us to run LOBPCG against the 2
million- and 5 million-node graphs without using
its block handling capabilities. This machine was
unable to run the baseline algorithm in Python to
completion on graphs larger than 50,000 nodes;
however, similar limits were reported earlier by
other participants in SGC.

While we took our starting point from the
emergingEdges dataset, we generated the input
stream for our experiments as a random permutation
of the static representation of the graph. This better
fit Charisopoulos’ observations about the update
edgeset of an evolving time-varying SBM graph. If
updates are randomly chosen from the distribution
of edges in the graph, then the edgelist set in
Charisopoulos’ formulation extends naturally to all

6

nodes in G.
For something such as filling in a static graph

from an input stream via a random permutation
of edges, one would expect the graph structure to
change with the log of the changes to the graph
size, as proxied by κ and α. This is maintained at
the node level as well, albeit with a simpler criterion
for α. A sequence of random changes to the graph
is unlikely to change the graph structure so long
as the number of changes increases the number of
edges by α, where α is as defined in Equation 7.

This, in turn, suggests that using the Charisopou-
los conditional where appropriate results in main-
tenance of partition quality with fewer and fewer
repartitions as the graph grows, with the total num-
ber of repartitions given by log1+α(|E|/e0), where
e0 is the initial input batch size. We refer the reader
to an upcoming publication of this work for a more
detailed look at this property [6].

We demonstrate this speedup and its dependence
on batch size by constructing a longer input stream
out of the given SGC graphs by reducing the
batch size by one, two, three and more orders
of magnitude, reducing the initial batch size e0.
Table III shows the results. While initially at batch
size of |E|/10 this approach actually is slower-
performance, at the next decrement, each row is
an order of magnitude increase in the number of
batches into which the input is divided, and each
produces an order of magnitude Speedup. The fit of
the results to the above log of the changes is shown
as Predicted Speedup and the Relative Difference;
the correspondence is fairly good.

V. DISCUSSION & FUTURE WORK

Providing a lightweight, change-based partition
triggering criterion enhances the performance of
existing partitioning algorithms by choking down
the partition rate to as-necessary rather than as-
preordained. We show how effective a log-proxy-
based choke mechanism is at keeping the number
of calls to the partitioner low without sacrificing ac-
curacy. This provides a useful rationale and potential
mechanism for accumulating updates until they pass
a certain error threshold in the label assignments.
Having etablished that this can have benefits, we
now are working to better understand its limits, from
an analysis of its sensitivity to temporal ordering

within the SGC stream datasets such as snowball
sampling.

Our code implementing the Charisopoulos repar-
titioning criterion in Python is available on GitHub
[5]. Next, we intend to assess the time and memory
performance at a finer grain, and investigate further
performance gains for graph partition from hard-
ware acceleration.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Andrei Knyazev
and Nicholas Macias for helpful discussions and
advice; and the anonymous reviewers for helpful
comments and suggestions. This research was sup-
ported in part by an appointment to the Intelligence
Community Postdoctoral Research Fellowship Pro-
gram at the National Institute of Standards and
Technology (NIST), administered by Oak Ridge In-
stitute for Science and Education (ORISE) through
an interagency agreement between the U.S. Depart-
ment of Energy and the Office of the Director of
National Intelligence (ODNI).

REFERENCES

[1] William N Anderson Jr and Thomas D Morley. Eigenvalues of
the laplacian of a graph. 1971.

[2] Vasileios Charisopoulos, Austin R Benson, and Anil Damle.
Incrementally updated spectral embeddings. arXiv preprint
arXiv:1909.01188, 2019.

[3] Anil Damle, Victor Minden, and Lexing Ying. Robust
and efficient multi-way spectral clustering. arXiv preprint
arXiv:1609.08251, 2016.

[4] DARPA/MIT. Data sets | graphchallenge.
https://graphchallenge.mit.edu/data-sets, 2016.

[5] L Durbeck. Charisopoulos partitioning criterion. GitHub
repository https://github.com/ldurbeck/charisopoulos, 2020.

[6] L Durbeck and P Athanas. Incremental streaming graph
partitioning (manuscript in preparation).

[7] Santo Fortunato. Community detection in graphs. Physics
reports, 486(3-5):75–174, 2010.

[8] Alan J Hoffman. Some recent results on spectral properties of
graphs. Beiträge zur Graphentheorie, pages 75–80, 1968.

[9] Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones,
Jeremy Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert
Reuther, Siddharth Samsi, William Song, et al. Streaming
graph challenge: Stochastic block partition. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages
1–12. IEEE, 2017.

[10] Andrew V Knyazev. Toward the optimal preconditioned eigen-
solver: Locally optimal block preconditioned conjugate gradient
method. SIAM journal on scientific computing, 23(2):517–541,
2001.

[11] Jirı Matoušek. On approximate geometric k-clustering. Discrete
& Computational Geometry, 24(1):61–84, 2000.

7

[12] Chao-Wei Ou and Sanjay Ranka. Parallel incremental graph
partitioning. IEEE Transactions on Parallel and Distributed
Systems, 8(8):884–896, 1997.

[13] Tiago P Peixoto. Efficient monte carlo and greedy heuristic for
the inference of stochastic block models. Physical Review E,
89(1):012804, 2014.

[14] Alex Pothen, Horst D Simon, and Kang-Pu Liou. Partitioning
sparse matrices with eigenvectors of graphs. SIAM journal on
matrix analysis and applications, 11(3):430–452, 1990.

[15] Daniel A Spielman and Shang-Hua Teng. A local clustering
algorithm for massive graphs and its application to nearly linear
time graph partitioning. SIAM Journal on computing, 42(1):1–
26, 2013.

[16] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning
for large distributed graphs. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pages 1222–1230, 2012.

[17] David Zhuzhunashvili and Andrew Knyazev. Preconditioned
spectral clustering for stochastic block partition streaming graph
challenge (preliminary version at arxiv.). In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages
1–6. IEEE, 2017.

8

