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Abstract—Community detection is an NP-hard graph problem
that has been the subject of decades of research. Moreover,
efficient methods are needed for time-varying graphs. In this
paper we propose and evaluate a method of approximating
the latent block structure within a time-varying graph using a
Kalman filter. The method described breaks a stream of graph
updates into samples of sufficient size, each one forming a graph
Gt, and has the desirable feature that it accurately updates its
representation of the latent block structure using a relatively
small amount of information: the prior t − 1 predicted block
structure and the current datastream sample Gt. This paper
details the underlying system of linear equations, used here
to represent community detection, that achieves 97% accuracy
estimating the latent block representation as the community
structure changes. This is demonstrated for synthetic graphs
generated by a hybrid mixed-model stochastic block model
from the DARPA/MIT Graph Challenge with time-varying block
structure.

Index Terms—Computation (stat.CO); Graph partition; graph
sparsification; stochastic block models; community detection;
time series data; streaming graphs; Kalman filter

I. INTRODUCTION

Graphs are often used to represent connections between
elements of a set, such as similarity or kinship between
elements; a family tree or social network are examples of sets
that can be represented as the nodes and edges of a graph.
It is possible to identify groups of nodes that are heavily
connected among themselves, but sparsely connected to the
rest of the graph; these groups are often characterised as
communities, modules or partitions. They occur in a wide
variety of networks.

Detecting communities is a fundamental and highly relevant
problem in network science with multiple applications. It
reveals non-trivial internal network organisation at a coarser
grain and uncovers relationships between nodes that may not
be easily accessible from direct empirical tests. Detecting
communities also helps to better understand the properties of
dynamic processes taking place over a network; for instance,
the diffusion of ideas within and between communities is
considerably affected by the structure of the network [1].

A graph partition generated by a community detection
algorithm is a more compact encoding of the graph that groups
nodes along boundaries that are present in the data, preserving
closely knit communities by some measure. In the usual defi-
nition of community detection, and in our case, the boundaries

are chosen that result in more intramural than extramural
connectivity. The resulting partition captures the community
structure of the graph using a several-fold reduction in the
number of edges. The optimal grouping is NP-hard; thus,
heuristic approximations are utilized. It is desirable to have a
simple, fast and accurate graph partitioner; given the ongoing
increase in data collected and the growing size of problems
being solved, there is continual need for improvement in graph
partitioning, coming not only from algorithm development and
fast implementations, but also from computer architecture and
custom hardware.

This paper pertains to community detection within time-
varying graphs. These are graphs that possess an additional
dimension of temporal variation in set elements—nodes or
edges—corresponding to some form of dynamics that in-
troduce temporal variation to the graph over time, such as
elements dropping out, or new connections being formed. In
such a graph there is generally not a single partition that holds
for all time, but rather a time series of partitions that; each
represents the community structure for a period of time and
then gives way to a better representation of the changed graph.

The problem is how to generate a time-varying partition
corresponding with the time-varying community structure of
the graph, and to do so with only the information present
in the current time window, which we treat as an adjacency
matrix containing nodes and edges that is relatively sparse
in its informational content. Changes in the adjacency infor-
mation are used to identify the latent or hidden community
structure. Further, the method used should give insights into
the temporal dynamics of the graph and be more efficient than
the DARPA/MIT Graph Challenge (DGC) baseline. This paper
seeks effective means of approximating dynamic community
structure.

We investigate the use of Kalman filtering (KF) [28] to
track temporal variation in the graph partition and update
community labels. KF is an efficient recursive method of
estimating the internal state of a linear dynamic system from
a series of noisy measurements [12]. We use KF to produce
time-varying graph partitions; this method takes advantage of
the information from all prior partitions along with the current
graph information (edge and node insertions and deletions)
to accurately update its representation of the latent block
structure of the graph.
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The main contributions of this paper are: 1) formulating
time-varying graph partition to allow Kalman filtering of graph
node and edge updates; 2) infrequent but effective updates of
previous node label (group assignment) decisions during the
KF process; and 3) comparative evaluation of the approach
to a known baseline in Streaming Stochastic Block Models
(DGC SSBM) to contextualize the results.

The paper is organized as follows. The Approach section
describes linear dynamic system equations, how the latent
information is represented, and the parts of the KF model
unique to this work. The Methods section outlines the KF
setup and parameters. The Experiments and Results section
describes the time-varying graph datasets and how they were
generated, defines the evaluation criteria, and presents results.
The Related Work section provides the larger context for this
work. The Discussion and Future Work section summarizes
the findings and contributions of this work and how it could
be further developed.

II. APPROACH

For graphs in which the node and connection information
is dynamic, the community structure can change over time,
requiring a method of update of the communities. The envi-
sioned datastream partitioner observes incoming graph updates
and maintains the community structure of the graph while
minimizing resource utilization and latency. The hypothesis
tested here is that KF can be used to observe the latent com-
munity structure from observed node and edge updates, given
an appropriate observation and state transition model. This
hypothesis is tested by constructing a KF model appropriate
for community detection and comparing its performance to the
DGC baseline algorithm for streaming SBM graphs.

The complementary goals motivating this work in general
are maximizing the graph analysis benefit while minimizing
the cost, for time-varying graphs. Minimizing the cost implies
minimizing the number of graph partition calls or invoca-
tions performed on the datastream, because partitioning is
computationally expensive, introduces latency into real-time
observation of the graph, and can require access to the entire
graph, depending on the algorithm used. The KF computation
is itself computationally expensive; however, there are linear-
time approximations for KF that do nearly equally well [23].
In the present work, the focus is on the most straightforward
implementation of KF rather than the most performant.

A. Baseline Algorithm (DGC SSBM)

The baseline algorithm for DGC by Kao [13] does not make
use of any information gleaned from the time series to trigger
invocation of the partitioner. In the emergingEdges example,
the partitioner is simply run with each incoming data stage;
each stage consists of a 10% addition of edges sampled at
random from a larger graph G without replacement.

This approach to streaming incurs no cost in assessing the
time series for changes relevant to community structure but at
the expense of unnecessary costs incurred partitioning when
it is the case that the changes to the community structure

are insignificant—as is true for nearly every stage of the
emergingEdges graphs [6]. Also, at timestep k the baseline
algorithm partitions using a graph that combines timesteps
G0 through Gk, which is suitable for the stationary examples
in the emergingEdges dataset, but results in an algorithm
that averages any temporal dynamics together. This approach
provides little sensitivity with which to capture dynamics, and
too little control over the weighting of “old” data, to be highly
useful for data that exhibits nonstationarity.

B. Kalman Filter-based Algorithm (KF)

Kalman filtering is a form of linear quadratic estimation
commonly used in signal processing and controls. It uses a se-
ries of measurements observed over time, containing statistical
noise, measurement-process noise and other inaccuracies, and
produces estimates of unknown variables that tend to be more
accurate than those based on a single (noisy) measurement
alone, by estimating a joint probability distribution over the
variables in each timestep. When used with its optimal gain
update mechanism, it produces a minimum mean-square error
estimate [12].

In its application here, the measurements, or direct ob-
servations, are the graph updates present in the time series.
These can be node or edge insertions and deletions. The KF
observation model and state transition model and other aspects
of the algorithm use these observations or measurements
to estimate the latent variables. In its application here, the
unknown latent variables are the community memberships of
nodes and the overall community structure. Given a time series
of graph updates, we use KF to update the nodal community
membership probabilities. The goal is to construct a KF filter
that will estimate group membership accurately from the
measured observations, even as the graph and its community
structure change in the time series data, for hybrid mixed-
membership stochastic block model time-varying graphs, and
evaluate the results.

The challenge is to devise an appropriate representation of
the problem dynamics, which is not an insignificant challenge.
With a suitable representation of the dynamics, the KF method
learns a gain that is adapted to and improved upon from
repeated recursive applications on the time series data that
minimize mean squared error.

1) Representation of the Latent Information: While the
aim is to discover and track the community membership
probabilities for each node, the representation of the latent
block information used here is not, for instance, an N × m
matrix with one entry per node n and community m, which
has the downside of presuming knowledge of the number
of communities. Rather than presume a certain number (or
maximum number) of communities, we instead assess the
probability of co-membership for each pair of nodes, from
which the block structure can be recovered. For a graph G
with N nodes, at each update cycle we update the N × N
matrix of pairwise probabilities p{u,v} that nodes u and v are
members of the same group by using the prior probability and
the relevant subset of edge information. For our purposes, this
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relevant set contains only current edge information so as to
evolve the pairwise probabilities along with the time-varying
graph; however, the choice of sample can be modified to
suit the analytic objective. Recursion within the KF algorithm
utilizes all prior pairwise probabilities in its estimation, so
they do factor into the present time period, but they are not
explicitly retained.

The precedents for representing the latent block structure
as pairwise co-membership probabilities are prior work by
Reichardt and Bornholdt [24], who used Monte Carlo methods
to approximate the pairwise co-memberships; and by Ferry
[7], who formulated an efficient Bayesian method of approx-
imating the pairwise group co-membership probability and
produced a successful demonstration of its use partitioning
static graphs within Lancichinetti’s LFR benchmark [16], [17]
using the co-membership probabilities as a starting point for an
agglomerative clustering technique. The KF observation model
we constructed was inspired by the pairwise probabilities
update formulated by Ferry [7], although the formulation is
fundamentally different on account of the constraints of the KF
algorithm. The benefit of establishing a method of assessing
co-membership probabilities within a KF-based framework is
that this leverages KF methods of estimation optimization to
allow for monitoring time-varying graphs and their changing
community structure.

Computing p{u,v} exactly is expensive; instead, Ferry’s
work suggests this can be conveniently approximated using
only the small subset of graph information ϵuv(G) that is
most relevant to the question of co-membership, forming an
estimate based on the presence or absence of edges only on
the vertex pairs that intersect u, v. From this they derive the
likelihood ratio under the competing hypotheses that u and v
are in the same group and in different groups, producing an
approximation p̂{u,v} of the posterior probability p{u,v} given
the prior probability, and considering the contributions from
edges in ϵuv(G).

This formulation allows update to the co-membership prob-
abilities matrix. Additional work is required to derive a
suitable clustering from this information and assign group
memberships, using the co-membership probabilities as a start-
ing point for something such as an agglomerative clustering
technique. To construct partitions from these co-membership
probabilities, Ferry used average-linkage clustering, defining
the distance between clusters to be the average over p{u,v}.
This approach gave highly accurate clusters based on NMI
as compared with other commonly used approaches on Lan-
cichinetti’s LFR benchmark graphs—which have power-law
distribution of group size and node degree [7], [8], [16].
Their results provide an important basis for the validity of
this approach for updating co-membership probabilities given
a sequence of edge updates.

2) Linear dynamic system: The key piece of the algorithm
that is unique to the problem of community detection is not
the representation of noise or the method of linear estimation,
but rather the method of update to the hidden state given
observations. In a two-stage KF, the update is provided during

the prediction phase by the state transition model (and process
model) and within the update phase by the observation model.
Taking the term names from Wikipedia [28], the KF prediction
model assumes the true state at time k is evolved from the state
at (k − 1) according to

Xk = FkXk−1 +wk

where Fk is the state transition model and wk is the process
noise drawn from a zero-mean multivariate normal distribution
with covariance Qk : wk ∼ N (0,Qk) and at time k an
observation (or measurement) Zk of the true state Xk is made
according to

Zk = HkXk + vk

where Hk is the observation model that maps the true state
space during the prediction phase, Xk, into the observed space,
and vk is the observation noise, which is also assumed to be
zero-mean Gaussian white noise with covariance Rk : vk ∼
N (0,Rk).

In order to use KF, one must model the process in ac-
cordance with its framework. This includes specifying the
following N ×N matrices, for each timestep k:

• Zk, the current sample of measurements or observations;
• X0, the initial state or its mean and covariance;
• Fk, the state-transition model;
• Hk, the observation model;
• Qk, the covariance of the process noise;
• Rk, the covariance of the observation noise;
The current observations Zk are an N×N matrix that is the

adjacency matrix of the graph formed in the current timestep,
Gk. It contains ones where there is an edge between nodes u
and v and zeros elsewhere, with the exception that the diagonal
entries are set to the relative incidence of extramural edges, s
which is the average ratio of between-group edges to within-
group edges, calculated from X0 and B0. The diagonal entry
value was chosen in order to pull out and appropriately scale
specific terms in the Hk observation model when p{u,v} = 0.

The initial state X0 can either be provided exactly or
assumed to be X0

∼= (µ0,
∑

0), with initial state mean µ0

and initial state covariance
∑

0. We provide the state mean
of the co-membership probabilities exactly, from the known
block partition B0 at the first graph stage X0. This approach
assumes that B0 is generated by invocation of a partitioner.
X0 is an N × N matrix that contains p{u,v} = 1.0 for

every node pair that are in the same group, and p{u,v} = 0.0
elsewhere. The diagonal entries of X0 are set to the relative
probability of extramural edges s, which is estimated from B0

and Z0. We set p{u,u} to a medium-to-low value; this lets Z1,
the adjacency matrix, begin to have ones when the observation
model has them, while also letting the observation model then
influence other values Zuv where u <> v. This allows some
cause Huv other than noise to create ones in the adjacency
matrix for Zuv . The covariance or standard deviation for the
initial state mean is provided in N ×N matrix form as well
as the value for each entry.
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For the state-transition model for each timestep, Fk, we
use the identity matrix I with zero offsets. This is somewhat
analagous to saying that the initial prediction for state Xk+1 is
the prior state plus Gaussian white noise, which is then fitted
to the observations and residuals.

The observation model for each timestep Hk is constructed
with most entries set to the probability of an edge in general,
which is defined as ρ, times the probability that {u, v} are in
the same group. The likelihood of any edge {u, v} existing is
the sparsity of the graph Gk at timestep k which is defined for
an undirected graph as ρ = E/(N × (N − 1)), if all positions
u, v are equally likely. The diagonal entries are set to ρ and
the off-diagonal entries are reduced by their relative role in
contributing to a one or zero in Zk, which they have mainly by
being co-members with either u or v, akin to the neighborhood
assessment ϵuv(G) performed by Ferry [7]. Given that the
main contributors to the values in Zk should be dominated by
p{u,v} and could be overpowered by a lot of other nonzero
probabilities along the u or v column of Xk, we scale the
off-diagonal entries by a factor of m, the number of blocks in
the graph, since the probability of {u, v} being in the same
group is roughly 1/m, if all groups were of equal size and
therefore equally likely.

Qk, the covariance of the process noise, and Rk, the
covariance of the observation noise, are fitted to the set of
observations for each time-varying graph using the expecta-
tion likelihood maximization function within the pykalman
python package [5].

III. EXPERIMENTS & RESULTS

Experiments utilize hybrid mixed membership stochastic
block model (HMMB) graph generation from the DGC graph
generator by Kao [13] combined with Wanye’s parameteriza-
tion interface [27]. The DGC graph generator is based on the
work of Kao, Gleyzer, Chung, Karrer and Newman, Peixoto,
and others [11], [13]–[15], [21]. These generative models
produce graphs that statistically correspond with real-world
graphs and the corresponding community membership infor-
mation. The second-generation DGC graph generator based
on Peixoto [21] implements Karrer and Newman’s classic
stochastic blockmodel [15] broadened to represent a greater
range of graphs using a hybrid mixed-membership model
(HMMB) of Kao [14]. HMMB graphs are a composite of
three identifiable network models as described in Kao [14] that
allow time-varying connections between members. An edge is
drawn from a Poisson distribution with rate λij ,

aij ∼ Poisson (λijT ) ,

over some time duration and frequency T . This is similar to
Karrer and Newman’s model [15]. HMMB models the rate
λi,j of interaction from each node i to j as

λij = (λiλj)×
(
πT
i Bπj

)
× Iij ,

by combining three canonical network models in this rate—
the power-law degree distribution and small-world network

model of Chung (λiλj), the mixed-membership stochastic
block model of Karrer and Newman

(
πT
i Bπj

)
, and the Erdôs-

Rényi sparsity model Iij—HMMB models properties of real-
world networks.

The DGC dataset for SSBM contains various sets of graph
structures that are self-similar along that range in other re-
spects such as sparseness and degree distribution, and proba-
bility of inter- and intra-group edges [4], [13] and that possess
known ground truth as to the group membership for each node.

The first set of experiments uses graphs we constructed
to be similar to the emergingEdges graph dataset for DGC
[4]—which gradually reveals a graph in stages of edges
picked at random. These graphs are more or less stationary
in community structure over time. We construct a sample
set by repeated graph generation while conserving the block
membership vector

The second set of experiments uses another synthetic dataset
we similarly constructed that has time-varying block mem-
bership that exhibits nonstationarity. It has the same basic
characteristics as the DGC datasets and was constructed using
the core elements of the DGC graph generation process, but
here the edges are drawn from a dynamic model within which
the block structure is changing over time. This allows for
a truer test of the ability to monitor change in community
structure than possible with the original DGC graphs. The par-
tition of such a graph into nonoverlapping communities is less
straightforward, as it can change over time. We constructed an
undirected binary graph representation containing a series of
files, one for each timestep 0− T .

We modified the DGC graph generator to return the block
membership for each node and ran it within a loop that evolved
the block structure to perform operations like block merges or
splits. For a block merge such as the one pictured in Figure 1,
we selected two groups based on their size to draw members
from, along with a hidden group with initially no members,
and randomly chose elements from either to migrate to the
hidden group at each timestep.

The general experimental goals are to establish the quality
of the results and the computational efficiency of the approach.
We evaluate the computational efficiency of our approach in
terms of its speedup over the baseline. Speedup is typically
defined in terms of latency as t/W of the new algorithm
over t/W of the old, where t is the total execution time
and W is the workload. Here we report t in the number of
cycles, where a cycle is defined as a call to the partitioner
f . For simplicity in this calculation we assume the same
partitioner is used for either. Since our approach is used here
to prevent calls to the partitioner, cycle time speedup captures
these performance gains. However, because speedup is so
intertwined with the graph properties, dependent on the degree
of community structure dynamics within the problem, there is
no general trend. We report speedup times in terms of the
graph dynamics for the sample set.

Experiments were carried out using Python implementations
of the algorithms on a server-class CentOS machine with 512
GB of memory. We evaluated the accuracy of our approach by
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Fig. 1. A time-varying graph from the dynamic graph generator, showing
growth and reduction in group size. The size of each group is represented as
a colored line over x-axis time. Nodes with block membership in Block 1 and
4 are gradually added to a new group, Block 6.

comparing the true and estimated co-memberships produced
within the KF predicted state. The KF filter update provides
Xk for each time period. We construct the corresponding
hidden true state under the assumption of non-overlapping
groups using the group memberships known at graph gener-
ation time by setting Tk element {u, v} = 1 where nodes
u and v are in the same block b of the partition-set B
and zero elsewhere. Accuracy is defined as the fraction of
nodes correctly identified as co-members, which is the number
matched of the algorithm’s results with the true labels over the
total number of ones in the true co-membership probability
matrix constructed for each timestep k from the block partition
BK . The mean accuracy observed across all experiments was
97.4% (n = 163072).

Speedup for stationary graphs similar to the emergingEdges
dataset is observed as roughly the number of time periods T
over the settling time of the KF estimation – at which point
the pairwise Euclidean distance of Xk −Xk+1 from timestep
to timestep is well below our initial setting for the distance
metric that indicates a need to partition, κ. For a thirty-timestep
example, this results in a speedup of roughly 10x.

We note that speedup is highly dependent on the dynamics
of community structure, and that for the example in Figure
1, there is virtually no speedup depending on the setting for
κ, the sensitivity of which is driven by the analytic problem.
In general, speedup is expected to be T divided by the ratio
of two sums: the number of triggering

∑
t ∆B < κ versus

nontriggering
∑

t ∆B ≥ κ timeperiods t.

IV. RELATED WORK

A summary of approaches to community detection or clus-
tering can be found in Fortunato [9]. There are many methods,
often with different objectives. Global objective functions for
clustering are not yet well characterized, and many studies are
still needed to understand the underlying mechanisms that are

responsible for the interactions of nodes in different graphs.
See for example [3], [9], [20], [22].

Tracking changes in community structure in time-varying
graphs, or dynamic graphs, has been a subject of study for
some time. A number of time-varying properties of dynamic
graphs such as shrinking diameter have been identified [2],
[18]. The problem of minimizing the effort of maintaining
accurate community structure for dynamic graphs was first
addressed at least twenty years ago in the domain of adaptive
finite element mesh generation, by Ou and Ranka [19], who
observed that, as the graph mesh is updated, the number of
actual updates to the partition assignment of the mesh elements
at any given time is small relative to the size of the graph.

In prior work, we showed that, for the stationary DGC
emergingEdges dataset, accuracy could be maintained with a
partition update rate at a frequency based on the logarithm
of the current graph sizes [6]. This, however, does not hold
for true time-varying dynamic graphs. This also leaves open
the graph update scenarios such as call or email logs, in
which edge and node updates are not random, and the pattern
of updates, or even a small set of changes, can vary the
community structure in ways that may be of importance in
understanding the data.

The KF approach has been successfully applied to tracking
node degree changes in opportunistic mobile transmission
networks by Soelistijanto [25]; exploring disease spread over a
social network given an epidemiological model of transmission
dynamics by Wang [26]; and dynamic community detection
by Fu [10] and Zhang [29], who both track an evolving block
membership. Fu showed improvement over a dynamic model
of node’s funtional roles in existing groups using KF with
logistic normal priors [10].

Zhang showed improvement over periodic application of
static methods for a community detector based on non-negative
matrix factorization (NMF) [29]. For an approximation of
an adjacency matrix X as the multiplication of two lower-
rank matrices X ≃ WH , they used KF to update the latent
factors of matrix H , which gives the cluster assignments for
nodes, and interleaved this with a joint alternating least squares
algorithm that learned the dynamics of W , which gives the
centroids of the groups.

Our approach differs from that of Fu or Zhang in that we
are observing a different phenomenon in order to simplify a
different class of algorithms. That is, we are attempting to
represent not H in NMF but the dynamics of the changes
in co-membership probabilities across time. This results in
a different model upon which we are basing our dynamics
of observation and state transition. At the algorithmic level,
our approach has the benefit over NMF of not setting the
number of clusters a priori as is necessary in NMF, but rather
discovering the number of clusters from the data.

An approximation of the co-membership probability matrix
p{v,w} was sought by Reichardt and Bornholdt [24], who
estimated its value by a Monte Carlo sampling of the partition
space, and by the faster Bayesian approximations of Ferry
[7]. Their demonstrations of these concepts, however, were
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limited to the construction of a working partitioner for static
graphs [7]. We base the filter’s hidden state representation on
estimating the pairwise block co-membership probability that
was demonstrated successfully for partitioning static graphs by
Ferry [7]. Here, we adapt the approach to better fit the context
of monitoring time-varying graphs and their evolving commu-
nities. Doing so within a KF-based framework leverages its
methods of estimation optimization.

For their work with static graphs, Ferry used a simple
log-uniform prior for the prior probability estimate, and the
complete edge information E from the full static graph G. In
our formulation for KF, the prior probability estimate is not a
log-uniform prior but instead given by the previous cycle, i.e.
p̂
{u,v}
t−1 , and we compute the posterior probability on the edge

counts n1, n2 and so on in the current timestep sample Gk. It
is possible for the KF state space to be initialized based upon
equal probability of membership in any community, using a
log-uniform prior, if it is not known. Here, for simplicity, we
assume that we partition the first timestep G0 to provide the
initial state and covariance, and subsequently track updates
using KF.

V. DISCUSSION & FUTURE WORK

The problem of maintaining an accurate community-
structure assessment of relationships in a temporal dataset with
time-varying characteristics was examined for dynamic graphs.
Use of a technique common in signal processing was explored,
namely, the application of Kalman filtering in an online mode
to graph updates. While KF at its most basic is a computation-
ally expensive process, linear-time approximations exist that
appear to be amenable to this use case [23]. KF was applied
to the problem of maintaining a model of node group co-
membership probabilities, with an appropriate update model
of community structure dynamics.

Invoking a partitioner on stages of a streaming dynamic
graph is an unneeded expense if the co-membership probabil-
ities have not changed significantly. Ideally repartition occurs
only when the current time window of the time series suggests
sufficient change to the community structure that the previous
partition no longer captures the characteristics of the data.

Our approach was tested for synthetic graphs with
real-world characteristics generated from a hybrid mixed-
membership streaming stochastic block model. A baseline
dataset of streaming HMM-SBM graphs was augmented by the
construction of graphs with stationary and time-varying com-
munity structure using the same basic generation techniques
but preserving the block membership state and evolving it.
These were used to demonstrate effectiveness in maintaining
an accurate assessment as compared with the true community
structure over time.

Experimental results demonstrate the accuracy and time-
performance of this approach to time-varying communities.
Cycle-time performance as measured by number of reparti-
tions over the datastream is close to optimal due to the extra
work of updating the graph state. This suppresses unnecessary

partition cycles done within the DGC baseline spectral method,
which constructs a new partition at every time period.

Future work includes expanding the dataset to which this
approach is applied to assess how well the model holds, along
with an investigation of the fit of linear-time KF approxima-
tions to the problem domain and model. Whether this dynamic
system model or approach applies to the wider classes of time-
varying graphs in general is a harder question than the one
addressed here. By careful choice of sample problems we
demonstrate whether the approach holds promise. We leave
the search for an optimal repartition metric and trigger for this
approach as future work requiring a representative sample of
graphs as well as a motivating analysis problem.
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