
INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY

Nanotechnology 12 (2001) 217–230 PII: S0957-4484(01)18831-8

The Cell Matrix: an architecture for
nanocomputing
Lisa J K Durbeck and Nicholas J Macias

Cell Matrix Corporation, PO Box 510485, Salt Lake City, UT 84151, USA

Received 31 October 2000, in final form 26 July 2001
Published 22 August 2001
Online at stacks.iop.org/Nano/12/217

Abstract
Much effort has been put into the development of atomic-scale switches and
the construction of computers from atomic-scale components. We propose
the construction of physically homogeneous, undifferentiated hardware that
is later, after manufacture, differentiated into various digital circuits. This
achieves both the immediate goal of achieving specific CPU and memory
architectures using atomic-scale switches as well as the larger goal of being
able to construct any digital circuit, using the same fixed manufacturing
process. Moreover, this opens the way to implementing fundamentally new
types of circuit, including dynamic, massively parallel, self-modifying ones.
Additionally, the specific architecture in question is not particularly
complex, making it easier to construct than most other architectures.

We have developed a computing architecture, the Cell MatrixTM, that fits
this more attainable manufacturing goal, as well as a process for taking
undifferentiated hardware and differentiating it efficiently and cheaply into
desirable circuitry. The Cell Matrix is based on a single atomic unit called a
cell, which is repeated over and over to form a multidimensional matrix of
cells. In addition to being general purpose, the architecture is highly
scalable, so much so that it appears to provide access to the differentiation
and use of trillion trillion switch hardware. This is not possible with a field
programmable gate array architecture, because its gate array is configured
serially, and serial configuration of trillion trillion switch hardware would
take years. This paper describes the cell in detail and describes how
networks of cells in a matrix are used to create small circuits. It also
describes a sample application of the architecture that makes beneficial use
of high switch counts.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The architecture described here is a general purpose computing
platform that gives fine-grained control over the design and
implementation of digital circuits. It is called the Cell Matrix
architecture. It supports a one-problem, one-machine model of
computing, in which the algorithm and circuitry are designed
together from first principles, even down to the gate level if
desired. Yet this architecture does not require the construction
of a universal nanoassembler (Bishop 1996) to achieve the one-
problem, one-machine model. This is because the physical
structure of the hardware is in all cases fixed. It consists of a
multidimensional array of interconnected processing elements
whose behaviours are specified by a changeable memory

incorporated into each element. This provides hardware
that is ‘reconfigurable’ based on the problem at hand, like
field programmable gate arrays (FPGAs). Not only is the
physical structure of a Cell Matrix fixed, but it is completely
homogeneous. This is not true for reconfigurable devices in
general; however, the Cell Matrix architecture is one in which
all necessary functions, including the ability to reconfigure
the hardware, are represented within the single repeating
structural unit, a cell. Unlike FPGAs, CPUs and memory
devices, there are no superstructures or specialized structures
within a Cell Matrix, just identical cells. A cell is a simple
structure, consisting of less than 100 bytes of memory and
a few dozen gates, as well as wires connecting the cell to
its nearest neighbours. The design of a cell and a matrix of

0957-4484/01/030217+14$30.00 © 2001 IOP Publishing Ltd Printed in the UK 217

http://stacks.iop.org/na/12/217

L J K Durbeck and N J Macias

cells is described below. The implication is that, once the
capability exists to construct a single, structurally simple cell,
as well as the capability to connect cells to their neighbours,
then, by repeated application, an entire matrix can be built or
grown. The matrix can then be used for the construction of
any of a wide variety of digital circuits and systems, such
as specific CPU and memory designs, parallel processors,
multiprocessors and so on.

There are some similarities between a Cell Matrix and a
cellular automaton (von Neumann 1966). Both are composed
of identical cells, connected in a regular fashion. In both, the
behaviour of a cell depends on the cell’s current state and the
state of its neighbouring cells. However, if a three-dimensional
Cell Matrix is viewed as a cellular automaton, its cells exists, at
any given time, in one of 6.36×10234 possible states (2(768+12)

given 768 bits for the cell’s truth table (which is independent
of other cells’ truth tables), and 12 bits for the inputs to the
cell). Since each cell has six neighbours, the total size of the
transition table for such a cellular automaton would contain
4.21 × 101543 entries. Moreover, programming a Cell Matrix
is a process almost identical to standard digital circuit design,
and holds little resemblance to the programming of a cellular
automaton. As such, it is perhaps most natural to view a Cell
Matrix not as a cellular automaton with a fixed transition table,
but as a fine-grained reconfigurable device, similar to an FPGA,
but possessing unique features which extend beyond typical
FPGAs.

In addition to providing a simple physical structure upon
which complex computing systems can be created, the Cell
Matrix architecture provides the means to efficiently utilize
extremely large numbers of switches, because the complexity
of controlling the system does not increase with switch count.
Rather, system control increases as cell count increases.
The architecture’s fine-grained, distributed, internal control
permits users to distribute problems spatially rather than
temporally. This ability is particularly applicable to large
but naturally parallel problems such as searching a large
space for an answer, as is needed for detecting chemical
signatures (such as those for cancer), decrypting text and root
finding for mathematical functions of the form f (x) = n.
On a sequential CPU/memory machine these problems are
distributed temporally, as the elements of the search space are
dealt with one by one until an answer is found. In a spatially
distributed machine algorithm, the process of analysing one
search space element can be replicated across a large matrix
of processors, each of which searches its small portion of
the search space. The set of processors can then operate in
parallel, reducing search time to the time it takes one processor
to complete its subset of the workload. We will show that
an algorithm and machine can be constructed to efficiently
distribute a search space problem over a large number of
custom processors below for the problem of cracking 56-
bit DES keys. We will also show that the construction of
all the processors can be done in parallel on a Cell Matrix.
This is important because, on an externally controlled FPGA,
although the resulting machine would function efficiently, the
(serial) configuration step would take months or years. The
implication is that the Cell Matrix architecture provides the
kind of control needed, and currently lacking, to efficiently
construct and utilize systems that take advantage of the

extremely high switch counts that atomic-scale manufacturing
could provide.

2. Background

One exciting outcome anticipated from atomic-scale manufac-
turing is not only the smaller system size it will provide but also
the ability to construct systems that use many orders of magni-
tude more components than in the past. This truly remarkable
expansion of physical hardware must be met by innovation
in computing architectures. In particular, control structures
and processes must be developed so that a ridiculously large
amount of components can operate simultaneously and pro-
ductively.

The need for innovative computing architectures bears
some stressing here. Reliance on old architectures is likely
to be frustrated long before the capacities of atomic-scale
manufacture are exploited. At a recent talk by Carver
Mead on computer architecture, someone asked why we
have not yet achieved parallel processing on the scale of
millions of processors. The speaker’s response was that
‘we have deliberately chosen to pursue a scalar processing
path. . . the success of current scalar architectures is the
single biggest impediment to the development of large-scale
parallel processing’ (Mead (2000)—paraphrased). Current
CPU/memory architectures will clearly benefit from greater
density in that they can be miniaturized, reducing latency, and
also providing more powerful systems that will fit on smaller
consumer devices. They will also benefit to some extent from
higher switch counts in that all system components can be
fitted onto the same substrate, CPU, memory, cache, FPU,
ALU and all, reducing communication latency/delays. There
will also be more room to add desirable system features, such
as an expanded function for the FPU and ALU units and more
language or instruction support, possibly returning to some of
the hardware support for exotic instructions found in pre-RISC
instruction sets. Beyond these improvements, there is no clear
way for CPU/memory architectures to tap into the extremely
high switch counts that should become available with atomic-
scale manufacture, because there is no clear way to massively
scale up the (CPU) architecture. It is somewhat accurate to
say that there is no such thing as ‘more’ Pentium�. There
is such a thing as more Pentiums�, however. Extremely
specialized multiprocessor systems involving as many as a
million processors, such as IBM’s ‘Blue Gene’ project, are
currently being developed (IBM 1999). General purpose
multiprocessor systems of this scale, however, generally suffer
from severe interprocessor bottlenecks, and interprocessor
communication schemes that scale to a million or a billion
processors have yet to be developed for these systems.

The necessity of invoking new methods and structures for
controlling such large and complex systems has been discussed
(Joy 1992). We are aware of no concrete designs that have
previously been presented (besides the one presented here).
It should be obvious that the control needs to scale with the
system so that it does not become an encumbrance. In general,
the notion that N processors can collectively perform a task N

times as quickly as a single processor does not hold, except for
very special cases. The overhead involved in coordinating a
large number of general processors to act in concert is simply

218

The Cell Matrix: an architecture for nanocomputing

(a)

(b)

Figure 1. (a) Network of simple processing nodes. The node
connection scheme is not fixed, as illustrated by (b).

too large. However, an N -fold speedup for N processors does
make sense, if each of the processors are properly chosen (as in
the Blue Gene project) or, in the case of a Cell Matrix, properly
configured.

Our work is on the demand side of nanocomputing rather
than the supply side. We believe that atomic-scale switches
will eventually be manufactured (Collier et al 1999). The
questions we attempt to answer are: given atomic-scale
switches, how do we organize them, and how do we use them
to obtain nanocomputers? We are working on the physical
organization (structure) and execution organization (function)
of nanocomputing platforms.

2.1. Organization of nanostructures

2.1.1. Cells. The architecture utilizes extremely fine-grained
reconfigurable processing elements called cells, in a simple
interconnection topology. The design of a cell is simple and is
uniform throughout the matrix. The computational complexity
comes from the subsequent programming of the cells, rather
than from their hardware definition.

A Cell Matrix can be viewed as a network of nodes, where
each node is an element of a circuit such as an AND gate,
a one-bit adder or a length of wire. Figure 1 provides an
illustration of this concept. FPGAs can also be thought of
this way, but the similarity breaks down when we look at
the physical properties and the architectural design of either
system. The network topology is regular and fixed throughout

D D D D C C C C D D D D
Inputs Outputs

N S W E N S W E N S W E

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0

DN DNCN CN

DS DSCS CS

DW

DW

CW

CW

DE

DE

CE

CE

0

0

0

000

0

0

0

0

CIN

OUT

A

B

C
OUT

0

Figure 2. A cell, with the memory block enlarged and shown at the
top of the figure. This cell’s memory is set up to implement a one-bit
full adder. This D-mode cell adds A, B and Cin and produces �out

and Cout. The lines with arrowheads indicate wires connecting the
cell to a nearby cell. Cells are connected to their nearest neighbours,
in this example, to four neighbours. Useful work is done by the
exchange of information among neighbours (in parallel).

the entire system, but in manufacturing a Cell Matrix, many
different such topologies are possible: nodes can be connected
to a set of 3, 4, 5, 6, . . . other nodes. The neighbouring nodes
are generally physically adjacent or nearby, to arrive at the
simplest and most localized structure possible. The network
is two way such that information can be exchanged between
nodes and in parallel.

The word ‘cell’ refers to the units from which the Cell
Matrix hardware is made. The nodes in a network correspond
to individual cells, and the network to cell interconnections.
Each cell has the ability to perform simple logic functions
on its inputs and produce outputs. The set of possible
logic functions includes typical small-scale integration logic
functions, NAND, XOR etc, as well as larger, more complex
functions, one-bit full adder, two-bit multiplexer etc. In fact, a
single four-sided cell is capable of implementing over 1019

different functions of its four inputs; a six-sided cell can
implement over 10115 functions.

A small memory contained within the cell is used to
specify the logic function. This memory block functions like
the machine code of a CPU, dictating the full scope of the cell’s
response to inputs. Figure 2 shows how the memory block can
be set such that the cell performs a useful operation. In this
case, the cell is configured as a one-bit full adder.

Cells, then, act as simple logic blocks. More complex
function is built up out of collections of cells. A region of a
Cell Matrix is ‘configured’ to behave like a specific circuit.

219

L J K Durbeck and N J Macias

crystal

Q

RUN

CLK CLK

Figure 3. A simple circuit built on top of a set of 27 four-sided Cell Matrix cells. The circuit shown is a counter. Interconnecting wires
between cells are not explicitly shown.

That is, each cell’s memory block is set up to perform a subset
of the larger circuit. Each cell is a node at which a small
amount of progress toward a larger system/circuit is made. A
small example is provided in figure 3, which shows a set of
cells that have been set up to implement a counter. The upper
left corner is a cell configured to act as a crystal. This cell
continuously outputs a repeating pattern of high and low bits.
The eight columns on the right are eight toggle flip flops, each
composed from three cells. The clock input is on the left of
the middle cell, and the bit value is output on the right of the
middle cell, as well as the top of the top cell. If the lower left
cell’s bottom input is set to 1, the crystal’s bits will be directed
to the clock input of the leftmost flip flop, causing that flip
flop’s output value to change every other tick. Its output is
also sent to the next flip flop’s clock input, causing that flip
flop to toggle every fourth tick, and so on. Hence the set of
outputs implement a ripple counter.

Note that when a set of cells is operating in combinatorial
mode, these cells are operating asynchronously, without
any pre-determined clocking. Outputs change as soon as
the cells’ circuitry can respond to changes in inputs, and
those new outputs are sent immediately to adjacent cells’
inputs. However, it is possible to synchronize operations by
constructing clock lines. It is also possible to synchronize
operations by making use of cells in modification mode. Cells
in modification mode change their configuration memories
(or truth tables) in sync with a system-wide clock, and these
changes can be monitored and used to generate local clocks.
The crystal in figure 3 is an example of such a local clock.

2.1.2. Cell configuration. The next issue is how each
cell comes to be a particular piece of a circuit. That is,
how are cells’ memory blocks set up, or configured? If
all function is represented at the cell, then the ability to
configure/set up a system must also be represented at that
level. This is indeed the case. Cells are dual in their
interpretation of incoming information. When the cell is
responding to inputs based on its cellular ‘configuration’, it is
operating in ‘combinatorial mode’, or data-processing mode,
as a combinatorial logic block. An additional mode, called
‘modification mode’, permits the cell to interpret incoming
information/bits as new code for its memory block. Cells
enter and complete modification mode through a coordinated
exchange with a neighbouring cell. During this coordinated
exchange, a neighbouring cell provides a new truth table to the
cell being modified. Thus cell configuration is a purely local

operation, involving just the two cells: the cell that has the new
code information, and the target cell into which the information
goes. Because they are purely local, these configurations can
occur simultaneously in many different regions of the matrix.

A cell’s current mode is determined by the value of its C
input lines. If all C inputs are 0, the cell is in combinatorial
mode, and it is processing D input to produce D and C outputs.
If however any of its C inputs are 1, then the cell is in
modification mode. In this mode, D inputs on all sides where
Cin = 1 are ORd, and the composite signal is loaded into
the cell’s configuration memory. This loading occurs on the
rising edge of a system-wide clock. On the falling edge of the
clock, the configuration bit to be replaced next is presented to
the cell’s D outputs (on those sides where Cin = 1). In this
way, by asserting one of its C outputs, a cell X can place a
neighbouring cell Y into modification mode. X can then read
Y’s configuration memory on the falling edge of the system-
wide clock, and X can load new (or the same) configuration
data into Y on the next rising edge of the clock. Thus by simply
manipulating its own C and D outputs, X can read and write Y’s
configuration memory, including performing a non-destructive
read.

Thus in combinatorial mode, D inputs are processed by the
cell’s configuration memory. In modification mode, D inputs
are used to rewrite the cell’s configuration memory.

Note that every cell within the matrix is capable of
operating in either combinatorial or modification mode.
There is no pre-existing determination of which cells are
in which modes. The mode of a cell is purely a function
of its inputs from its neighbouring cells. In a typical
complex application, the Cell Matrix will contain some cells
that are processing data, and others that are involved in
cell modification/reconfiguration. Overall function involves
close cooperation, interaction and exchange among the
combinatorial mode and modification mode cells within the
Cell Matrix.

With this simple set of behaviours, it is possible not only
to do general processing using a collection of cells, but to cause
cells to read and write other cells’ configuration information.
This leads to dynamic, self-configuring circuits whose run-
time behaviour can be modified based on local events.

2.1.3. Cell implementation. All of the behaviour details
described above can be represented with a simple digital
circuit. Figure 4 shows a circuit for a cell with four neighbours.
Note that there are different ways to design and build a cell,

220

The Cell Matrix: an architecture for nanocomputing

Dn in
Ds in

Dw in

De in

ClockReset

Ce
in

Cw
in

Cs
in

Cn
in

Cn
out

Cs
out

Cw
out

Ce
out

Dn
out

Ds
out

Dw
out

De
out

Clk
D
Q

Reset Shift Din

Shift
Enable Row

Select

Dout
Outputs

4-16
Sel

Figure 4. Schematic diagram of the specification for a Cell Matrix
cell, showing the digital logic contained within a cell.

each of which have a different corresponding digital circuits.
Figure 4 shows one particular implementation, as described in
US Patent 5 886 537. Other simpler designs have also been
patented (US Patent 6 222 381).

In figure 4, the C and D inputs and outputs are the same as
shown in figure 2, here labelled as input or output wires. Two
additional inputs are also shown. Clock is the system-wide
clock, used for writing and reading configuration information
to and from a cell’s configuration memory. Reset is used to
preset the cell’s configuration memory to a pre-determined
state, for example, one in which all configuration bits are 0
(NOP).

The block labelled ‘4–16 Sel’ is a standard logic block,
accepting four inputs and asserting one of its 16 outputs
accordingly.

The large block in the middle of figure 4 is the cell’s
configuration memory, implemented as a shift register. Serial
data is supplied through the Din input, which is shifted on the
falling edge of the shift input. Note that a flip flop latches a
single bit on the rising edge of the clock signal, and this latched
bit is presented to the shift register’s Din input. The bit which
will next be shifted out of the register is continually presented

LOAD

Din

READ READ

Din

LOAD

READ

Din

LOAD

READ

Din

LOAD

READ

LOAD

READ

WRITE

A0

A1

A2

A3

LOAD

READ

LOAD

Din

READ

LOAD

Din

READ

LOAD

Din

READREAD

Din

LOAD

LOAD

Din

READ READ

Din

LOAD

READ

Din

LOAD

READ

Din

LOAD

READ

LOAD

LOAD

Din

READ READ

Din

LOAD

READ

Din

LOAD

READ

Din

LOAD

READ

LOAD

LOAD

Din

READ READ

Din

LOAD

READ

Din

LOAD

READ

Din

LOAD

READ

LOAD

LOAD

Din

READ READ

Din

LOAD

READ

Din

LOAD

READ

Din

LOAD

READ

LOAD

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

AND5

AND5

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

OR
2

INV

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

INV INV INV INV

AN
D2

AND2

NOR2

AND2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

NOR2

AND5

OR
2

AND5

INV

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

AND2

NOR2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

AND5

OR
2

AND5

INV

NOR2

NOR2

AND2

AND2

AND2

INV

AN
D2

OR
2

AND2

NOR2

NOR2

NOR2

AND2

AND2

AN
D2

INV

AN
D2

OR
2

NOR2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

AND5

OR
2

AND5

INV

NOR2

NOR2

AND2

AND2 AND2

INV

AN
D2

OR
2

NOR2

AND2

NOR2

NOR2

NOR2

AND2

AND2

AN
D2

INV

AN
D2

OR
2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

AND5

AND5

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

AND2

NOR2

NOR2

AND2

AND2

AN
D2

INV

AN
D2

OR
2

NOR2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

AND5

AND5

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

NOR2

NOR2

AND2

AND2

INV

AN
D2

OR
2

GND

D out

D in
READ

WRITE
A0

A1
A2

A3

unit repeated a total of 16 times...

Figure 5. A schematic diagram for the digital logic contained in a
16 × 4 bit memory.

on the Dout output. Shifting occurs only if the shift enable bar
input is low.

The shift register is organized not only as a 128-bit shift
register, but also as a 16 × 8 random access memory. Viewed
as this memory, one of 16 rows is selected via the row select
inputs. The eight outputs are sent to the output lines shown
at the bottom of the figure. Finally, the reset input pre-sets all
128 bits inside the shift register to predefined values.

None of the inputs or outputs are buffered, beyond what
is shown in figure 4. As soon as the shift register shifts,
or a change occurs in the D inputs, the outputs will change
immediately (as soon as the circuitry can respond). It is only
the actual sampling of input by the flip flop and the shifting of
the shift register which are synchronized to the clock signal.

Note also that the design of a cell is independent of
the underlying implementation technology. For example,
Drexler’s ‘rod logic’ (Drexler 1988), once available, would
work as well as silicon for implementing a cell. Whatever
your underlying technology, as long as you can build a NAND
gate, memory units (which can also be built from NAND gates)
and interconnections, you can build a Cell Matrix.

In all designs, the largest component is a memory block
to hold the cell’s configuration information. Memory size per
cell is 16 × 8 for four-sided cells, 64 × 12 for six-sided cells
(which can be two or three-dimensional physically), and, in
general, (2n) × (2n) where n is the number of neighbours
or sides. Besides the memory, there are a few dozen simple
gates (NAND, OR etc) plus a few multiplexers (selectors) and
flip flops (single-bit memories). The silicon chip version of
a four-sided cell requires approximately 1000 transistors. At
least half of those transistors are for memory.

221

L J K Durbeck and N J Macias

Figure 6. The schematic diagram from figure 5, 16 × 4 bit memory, implemented on a set of Cell Matrix cells.

We have built small cell matrices on silicon chips and used
them for small circuits. Current silicon techniques will scale
up to at least 100 000 cells. Current techniques will permit a
two-dimensional configuration or a multiplanar configuration.
To really get beyond what conventional architectures and
circuits can do, to traverse the research frontiers that cell
matrices make accessible, requires much denser manufacturing
techniques than are currently available in silicon. This
objective also would benefit from manufacturing that permits
higher-dimensioned cells in three-dimensional matrices.

Using estimates from Drexler (1992) and Freitas (1999),
assuming approximately 500 gates per four-sided Cell Matrix
cell, and a maximum path length from input to output of 10
gates, a rod logic-based Cell Matrix cell might be expected to
occupy 8000 nm3, dissipate 6.5 × 10−21 J and switch in 1 ns.

2.1.4. Simple, conventional (static) circuits built on a Cell
Matrix. This section discusses the use of cell matrices as
a substrate for conventionally used circuitry. Arbitrarily
complex digital logic circuits can be implemented on Cell
Matrix hardware. Examples are state machines, CPUs
and computer memories, arithmetic logic units (ALUs),
floating point units (FPUs) and digital signal processors
(DSPs). Just as these circuits are translated to transistor-based
implementations, they must be translated to a Cell Matrix
implementation. This process is similar to the translation of
circuits for implementation using small-scale integration parts,
and is well defined. It involves first the reduction of a circuit
to recognized subcomponents (AND, NAND, XOR, adders,
multipliers etc), and then the programming of cells and sets of
cells to implement and connect the subcomponents.

Two examples of translation to cell matrices are provided
here, and on our web site, www.cellmatrix.com, both are more

fully described and are available for upload into a Cell Matrix
simulator. Figures 5 and 6 present a schematic diagram for
a 16 by 4 bit memory module circuit and the Cell Matrix
implementation of the memory. Each of the components of
the memory circuit are represented by one cell or a handful of
cells. The extension of this memory module to a larger number
of rows and bits is straightforward. Figures 7 and 8 present a
second translation, from a schematic diagram for an eight-bit
ALU to the Cell Matrix implementation of the ALU.

Note that in figure 8, the longest path from inputs
to outputs is approximately 14 cells. Therefore, the
ALU’s longest propagation delay is 14 times the maximum
propagation delay of a single Cell Matrix cell. Assuming
a relatively slow 1 ns switching time for a single cell, this
translates to a maximum ALU operation of around 70 MHz.
Two points should be kept in mind here. First, all the usual
tricks for faster execution of hardware (such as pipelining) can
still be applied to circuits built on a Cell Matrix. Second, the
key to efficient use of a Cell Matrix is not in the speed of a
single circuit, but in the ability to effectively configure and
operate large numbers of circuits in parallel.

The translation of larger circuits follows the same
pattern/mechanism, simply involving more cells. A schematic
diagram entry system is currently being developed at Utah
State University to provide a familiar front-end to digital logic
designers.

Direct translation of existing circuits does not necessarily
result in the best circuit for the job, because in general, the
architectures from which these circuits are translated do not
exhibit the degree of distributed parallelism of the Cell Matrix
architecture. Cell matrices can also be used to implement
custom circuits that solve a specific problem faster or better
than an implementation on a general-purpose machine. It

222

The Cell Matrix: an architecture for nanocomputing

OR
2

AN
D3

AN
D3

AND3

INV

AN
D3

INV

OR
4

AN
D4

INV

INV

OR
2

AND2

OR
2

AN
D3

AN
D3

INV

INV

INV

INV

INV

INV

AND3

AND3

AND3

AND3

INV

AN
D3

AND2

OR4

AND2

INV

OR3

OR
4

AN
D4

INV

AND2

OR
2

AN
D3

AN
D3

AND3

INV

AN
D3

AND2

OR4

INV

OR3

OR
4

AN
D4

INV INV

AND2

OR
4

AN
D3

AN
D3

INV

INV

INV

INV

INV

INV

AND3

AND3

AND3

AND3

INV

AN
D3

AND2

OR4

AND2

OR3OR3

OR
4

AN
D4

INV

AND2

OR
2

AN
D3

AN
D3

INV

INV

INV

INV

INV

INV

AND3

AND3

AND3

AND3

INV

AN
D3

AND2

OR4

AND2

INV

OR3

OR
4

AN
D4

INV

INV

OR
2

AN
D4

AND2

OR
2

AN
D3

AN
D3

INV

INV

INV

INV

INV

INV

AND3

AND3

AND3

AND3

INV

AN
D3

AND2

OR4

AND2

INV

OR3

OR
4

AN
D4

INV

AND2

OR
2

AN
D3

AN
D3

INV

INV

INV

INV

INV

INV

AND3

AND3

AND3

AND3

INV

AN
D3

AND2

OR4

AND2

INV

OR3

OR
4

AN
D4

INV

AND2

AN
D3

AN
D3

INV

INV

INV

INV

INV

INV

AND3

AND3

AND3

AND3

INV

AN
D3

AND2

OR4

AND2

GND

fo

f1

B4B5 B3B7 B6 B2 B1 B0

A7 A6 A5 A4 A3 A2 A1 A0

X0X1X2X3X4X5X6X7

f1 f0 X

0 0 A + B
0 1 A
1 0 A & B
1 1 A B

Figure 7. Schematic diagram of the digital logic for eight-bit, four-function ALU. The functions it performs are also shown.

B4B5 B3B7 B6 B2 B1 B0

X1X2X3X4X5X6X7 X0

A4A5 A3A7 A6 A2 A1 A0fof1

f1 f0 X

0 0 A + B
0 1 A
1 0 A & B
1 1 A B

Figure 8. The schematic diagram from figure 7, eight-bit ALU, implemented on a set of Cell Matrix cells.

is equally straightforward to use a Cell Matrix to implement
custom circuits, given some expertise in digital logic. The
custom circuit need be no more complex than the small set
of problems it has to solve. Figure 9 provides an example
of custom circuitry that attempts to match an input to a set
of known inputs. This circuit compares an input bitstream
containing an arbitrary number of bits, say n bits, to some
number of possible matches, say m matches, in parallel. This
circuit is nice because it is straightforward to implement, and it
gives the answer in one step rather than n × m steps. In a case
where n and m are large and the system is intended to do its
pattern matching on a long stream of inputs, the initial effort
of making a parallel custom circuit becomes preferable over
running a sequential program on a general-purpose computer.

Note that while the total propagation delay of the circuit
in figure 9 increases linearly with both the number of patterns
being compared to (N) and the width of those patterns (W),
for large N and W , this can be significantly better than a loop-
based algorithm on a fixed-sized sequential machine. On a

sequential machine with a fixed word size (say 64 bits), each
pattern comparison will require W/64 operations. Comparing
all N patterns will thus require N ∗ W/64 operations, for a
total time of (N ∗ W/64)τCPU. On a Cell Matrix, the total
propagation delay will be roughly (N + W)τCM, where τCM is
the propagation delay through a single Cell Matrix cell. For
sufficiently large N and W , (N + W)τCM will be less than
(N ∗ W/64)τCPU.

Using a Cell Matrix also promotes rapid prototyping and
permits refinement of the circuit over time. It also permits
outright changes to the circuit specification. All of these
are natural uses of a hardware programming environment that
improve the end result. At the end of the development cycle,
the circuit can be constructed directly in dedicated hardware
if desired. For conventional circuits, using conventional
fabrication techniques, dedicated hardware versions will
generally operate faster than a Cell Matrix implementation
because of the repeated node delays in a Cell Matrix. It is
currently unclear what the magnitude of these delays will be

223

L J K Durbeck and N J Macias

. . .

. . .

. . .

. . .

. . .

. .
 .

. .
 .

Input Pattern

B
0

B
1

B
2

B
3

B
n-1

+

+

+

+

+

0

Pattern
Found

=Pattern 0?

=Pattern 1?

=Pattern 2?

=Pattern 3?

=Pattern m-1?

Figure 9. This circuit tests an n-bit input pattern B against m
different test patterns. Each row j is configured to compare all n
input bits, in parallel, with the n test bits of pattern j . All m patterns
are checked simultaneously. Thus all m × n comparisons are
performed in a single time step.

with atomic-scale manufacture; if both dedicated hardware
and cell matrices fall within the picosecond delay range, the
difference may be negligible or may fall within acceptable
engineering limits.

Another consideration in implementing conventional
circuits on cell matrices is that they can take advantage of
the architecture’s natural fault isolation. The additional logic
to detect and handle faults as they occur can also be added
to the circuit definitions, rendering the end result significantly
more robust to defects or damage than standard custom ASIC
or FPGA-based systems. We are currently working toward
integrating basic and not-so-basic fault detection and handling
into useful circuits, and we expect to eventually make this fault
handling readily usable for any circuitry.

Direct translation of existing digital circuitry is one use
of the architecture, and may prove worthwhile if Cell Matrix
manufacture becomes sufficiently inexpensive. Or, if it can be
used to easily add a beneficial feature to the system, such as
fault tolerance, then use of a Cell Matrix may be preferred over
custom ASIC or FPGAs. Another feature of the architecture
is rapid configuration times due to the ability to configure
many regions of a matrix at once. Even with today’s silicon
technology, configuration times for FPGAs are not as short as
one would like. Rapid configuration increases in importance
with hardware platform size, and becomes tantamount to
success with trillion trillion switch systems (as does fault
tolerance).

2.1.5. Dynamic, self-modifying circuits on a Cell Matrix.
Conventional circuitry is largely static: the hardware
configuration does not change during its use. Cell matrices
can implement static circuitry, as shown in the previous
section; however, they can also implement dynamic circuitry.
This section describes the benefits of dynamic circuitry and
some important architecture characteristics that make dynamic
circuits convenient enough to become a commonplace tool for
problem-solving, as well as a critical element in extremely
large systems.

Simply put, dynamic circuits change during their
execution. For example, in dynamic circuits, cells or networks
of cells might change behaviour, or they might change the
behaviour of regions around them, or they might migrate
to new positions in the matrix, or shrink, or expand to
include more cells. These changes can be designed to
occur in a deterministic and orderly progression, such as the
design of expanding counters or multipliers which extend
themselves to avoid an arithmetic overflow condition. Or,
the changes can be nondeterministic in nature, as might be
useful in certain evolvable hardware experiments, or outside
programmer knowledge/control, such as onboard automatic
system optimization or repair.

An example in which dynamic circuit reconfiguration
could improve system function is found with ALUs used by
CPUs to perform a set of basic instructions such as addition
or logical negation. ALUs do not contain dedicated circuitry
for all arithmetic functions, just for a limited set, the set being
determined (and forever fixed for the life of the system) by the
hardware designer by analysis of a set of ‘typical’ problems.
When a function from the short list is encountered, it is handled
efficiently; the rest are handled more slowly, by a series of
operations.

In a Cell Matrix, dynamic components of the circuit could
be used to improve ALU function on a per problem basis. A
(static) monitor could observe the instructions being executed
by the CPU, including the ones which can be performed
directly by the ALU and those that require a series of ALU
operations. The monitor would compile statistics on the
most heavily used functions over a period of time. If this
list fell too far out of line with the current list of ALU
functions, the monitor would initiate the synthesis of a new
ALU, which would include the more heavily used functions,
while eliminating the lesser-used ones. The new ALU, once
constructed, would then be swapped in by changing a single
routing path switch. The next subsequent ALU synthesis
would then be performed on the former ALU, and so on.
Making the ALU dynamic would, in effect, permit the on-
the-fly optimization of the ALU to the problem currently
being solved. On a Cell Matrix, it is also important to
note that the operation of the monitor and ALU synthesizer
would not slow down the overall system function; they would
operate in parallel, using their own resources, separate from
the CPU/ALU and the rest of the system, and separate from
any other systems currently running inside the Cell Matrix.

Dynamic circuits are also useful in the detection, isolation
and handling of faulty cells. For example, it is possible to
build a circuit which performs the equivalent of a ‘scandisk’
operation on hardware. Such a circuit would perform an initial
analysis of an empty Cell Matrix, testing different regions of
the matrix (in parallel), and looking for faulty cells. Once
detected, faulty cells would be isolated by good cells around
them, and markers would be placed to indicate the location
of these bad cells. Future configurations would then look for
these markers before using a region inside the matrix.

Dynamic circuits can also be used to support run-time
fault tolerance, by configuring empty regions of the matrix
to replicate circuits occupying recently failed regions. Once
the circuits have been replicated, the interconnecting pathways
between circuits would be rebuilt, to map in the new circuits
and remove the old.

224

The Cell Matrix: an architecture for nanocomputing

known plain text

My ID

genKEY

Match?

SEND

known cipher text

Match KEY

Match KEY

Match KEY

64

64

64

column

row

Figure 10. Diagram of a single processor for the DES cracker.

For hardware that must be configured, internal,
distributed, local system modification is a fundamental
requirement for trillion trillion switch systems. More
generally, for both configurable and nonconfigurable trillion
trillion switch systems, internal, distributed, local system
control is a fundamental requirement. External and/or
nonparallel control or modification would grievously impair
system throughput, rendering such large systems uselessly
slow.

2.2. Efficient utilization of extremely large numbers of
switches

The Cell Matrix architecture’s support of distributed
computation and distributed control and its natural parallelism
provide a good platform for the development and use of
extremely large circuits, such as those which may be possible
using atomic-scale manufacturing. This is demonstrated here
by example. In this example, a large search space is efficiently
searched, first by laying down a grid of custom processors on
the matrix, each of which is responsible for a small subset of
the overall space, then by the propagation of a small set of input
data to all processors in parallel in an advancing front style,
then by processors’ execution of a simple pattern matching
algorithm, all in parallel, then by the propagation of the ‘right
answer’ to a corner of the grid.

This basic technique is used here to construct a fast circuit
for discovering the key which was used to encrypt text using
the 56-bit data encryption standard (56-bit DES) (NIST 1993).
Such a key search is sometimes referred to as ‘cracking’.
Cracking 56-bit DES is a good choice among search space
applications because

(a) it truly requires an exhaustive search: there is no way
to prune the search space or creep up on the solution
iteratively. This makes it a naturally large problem, yet

(b) it can be accurately modelled by a pared down data
encryption scheme, such as a four-bit DES, and thus
the solution mechanism can be built and tested using
conventional hardware.

2.2.1. Design of a 56-bit DES cracker. The DES cracker
uses a two- or three-dimensional grid of individual processors.
Figure 10 shows the basic design for a single processor.
Cracking requires two things: a piece of unencrypted text,

called plain text, and the corresponding encrypted text, called
cipher text. The object of each processor is to encrypt the
plain text using one particular key, and then compare the result
to the ‘desired’ cipher text. If the result matches the cipher
text, then this processor must have used the right key. The key
is then passed out of the processor to a fixed location in the
matrix, from where it can be presented as the final output of
the machine. The ‘SEND’ block and the ‘Match KEY’ signal
are used in this process, which is more fully explained below.

Each processor contains several distinct blocks of
circuitry. These are represented in figure 10 as a vertical series
of ‘black boxes’ that compute something and pass a result
along to the next box downstream. The first block, labelled
‘MyID’ in the figure, receives unique positional information
while it is being configured, such as the processor’s row and
column in the overall network. This information is passed to
the ‘genKEY’ block, which uses it to construct a unique key.
This key is a candidate, one which may or may not correctly
encrypt the plain text into the encrypted text. The full set of
possible keys is represented by the full set of processors in the
network represented in figure 11. The block labelled ‘Match?’
takes the key from genKEY and encrypts the plain text using
its key and the known DES algorithm. It then compares the
result to the cipher text, i.e. the proper encryption of the plain
text. If the cipher text does not match the locally encrypted
text, then the match failed, and the ‘Match?’ block sends a
zero to the block labelled ‘SEND’.

Figure 11 shows the design for processor communication,
as well as the larger algorithm that the circuit implements.
Processor communication is handled largely by the SEND
signal that is the result of the SEND function performed by
each processor. The inputs to all processors are the cipher text
and plain text, which are put in at the upper right corner of
the network. The wires shown in the figure represent busses,
or sets of wires; the numbers of wires per bus are indicated.
Keep in mind that these wires themselves are built from
Cell Matrix cells. There are no underlying communication
pathways available within the Cell Matrix other than between
neighbours. Sets of neighbouring cells act cooperatively to
function as wires and buses.

Signalling occurs asynchronously, and the time to
propagate the inputs is a simple function of propagation
delay. The time to propagate the Match KEY signal is also
primarily a function of propagation delay (and also depends,
less significantly, on the time it takes one processor to compute
its SEND signal). The processors operate independently and
in tandem. When the system starts, all processors begin
outputting zeros for their Match KEY signals. As soon as a
processor has computed its match signal, it updates its SEND
signal based on whether or not it matched. The SEND signal
is computed all the time, not just once; asynchronously with
the processor’s computation of its own match signal, its SEND
block is receiving results from the processors to its left and
below it. The network is given an opportunity to settle its
outputs, long enough that all processors have computed their
match signals and have propagated their results to the upper
right corner of the circuit. At this point the right key is sampled
from the Match KEY signal at the upper right corner of the
circuit, and the answer is thus obtained.

The SEND signal shown in table 1 is a locally computed
signal that is summed up across the grid to provide an

225

L J K Durbeck and N J Macias

known plain text

known cipher text,

Match KEY

Match KEY

Match KEY

130

Match KEY

(0,0)(1,0)(2,0)

(2,1) (1,1) (0,1)

(2,2) (1,2) (0,2)

SEND

Match?

row, column,

Figure 11. Network diagram for a 56-bit DES encryption cracker utilizing a spatially distributed parallel algorithm. This diagram shows
how the processors communicate with each other. Only nine of the processing blocks are shown.

Table 1. Logic table for SEND signal. ‘Y’ indicates a matched key
is available from the left, from below, or from the current processor.
‘N’ indicates such a key is not available. ‘—’ is a do not care.
SEND column indicates which key is output by the processor (0
means no key is sent).

Left Below Match? SEND

Y — — LeftKEY
— Y — BelowKEY
N N Y self KEY
N N N 0

answer at the upper right corner of the circuit. Interprocessor
communication is limited to this simple, monotonically
moving signal. If any processor’s key matches, it passes its key
to those processors it communicates with, i.e. the processor
above it and the one on its right. They in turn pass the
key onward to all the cells above them and to the right of
them, and so on, through all processors that lie above and to
the right of the match, until the key reaches the upper right
corner of the circuit. This can be thought of as the match
key being percolated upward and rightward until it reaches the
destination. Because this is hard to picture or represent in a
static image, a simulation of this process is provided on our
web site, www.cellmatrix.com/entryway/products/research/
applications/DESCracker/signals.html, and you can observe
the percolation process and set the match point to whatever
processor you like.

2.2.2. Design implementation. This section addresses
the construction of the DES cracker, i.e. the layout of
the processors and interconnections onto a Cell Matrix.

Constructability in parallel is one of the initial considerations
during the design of the DES cracker (and of any of the class
of spatially distributed circuits it represents). The construction
algorithm and mechanism described here grows as the cube
root of the number of processors in three dimensions, and
grows as the square root of the number of processors in
2D. These times are achieved by taking advantage of the
architecture’s parallel, distributed control.

It is important for the circuit design to be one that can be
laid down on a Cell Matrix in parallel, under matrix control.
To this end, the assignment of keys must be sufficiently
programmatic that it can be easily automated, and so that it
does not require that the processors themselves be different
from each other1. We achieve this by designing the processors
such that they generate their own keys based on positional
information determined at run time. Although they later use
their positional information to construct different keys, the
processors themselves are identical to each other. This makes it
possible to quickly lay down identical processor configurations
in parallel throughout the matrix, which then differentiate to
represent the full set of possible keys. If insufficient hardware
is available to dedicate each processor to a single key, the
process is the same, except that base keys which differ by
some number ‘d’ are distributed among the processors, and
each processor generates d keys from the base key it receives.
The logic blocks that generate and compare the keys are also
modified to check all d keys for a match.

Figure 12 illustrates the wavefront-style algorithm used
to populate a Cell Matrix with DES cracker processors.

1 In fact, in a Cell Matrix, it is possible to configure different circuits in
parallel. However, the implementation of a single processor circuit with
dynamic key assignment is simpler and just as illustrative.

226

The Cell Matrix: an architecture for nanocomputing

(a)

(b)

Figure 12. The procession of a wavefront-style configuration from
the upper right corner outward.

The squares represent regions, blocks of cells, large enough
to contain a processor, its interconnect, and any configuration
circuits needed to implement local configurations. The
algorithm is recursive. A region in the upper right corner of
the circuit is configured with an intermediate configuration.
This configuration permits it to configure the regions to its
left and directly below it. Each of these regions is provided
with an intermediate configuration that permits them, in
turn, to configure the regions to their East and South with
an intermediate configuration that permits the third tier to
configure the fourth tier, and so on. The tiers correspond
to generations, one new generation spawned per time step.
Tier membership is indicated by shading in figure 12(a) (black
is oldest generation, white is not yet configured), with the
processors belonging to each generation shown by lines in
figure 12(b).

Using this configuration strategy, (n2 + n)/2 processors
will have been configured by generation n. On a three-
dimensional matrix, the number of processors configured
by generation n is of the order of n3. In this way, the
72 000 000 000 000 000 processors required for 56-bit DES
(dedicating each processor to only one key) can be configured
in under 417 000 generations.

The algorithm assumes that the only area of the matrix to
which it has access is the upper right corner. If more points of

known plain text

My ID

genKEY

Match?

SEND

known cipher text

Match KEY

Match KEY

Match KEY

64

64

64

column

row

init
strobe

Figure 13. The processor implemented for the four-bit simulations.

entry are available, or if the centre of the region is accessible,
then the algorithm could be modified to take advantage of
accessibility to cut configuration time further.

2.2.3. Four-bit DES cracker. Current simulation and
fabrication techniques make the construction or simulation of
the full 56-bit system difficult, on account of the costs—the
cost of hardware for the physical implementation and of CPU
time for the simulations. Therefore a much smaller circuit
was designed and tested. We used the specifications for 56-bit
DES to design a similar but smaller four-bit DES, and then
constructed a simulation of a 2D grid of four-bit DES cracking
processors. The circuit employed in the four-bit version is
perfectly scalable, and can easily be augmented to represent
the full 56-bit DES algorithm.

Enough text must be provided to the machine such that
only one unique key correctly encrypts the text. Insufficient
amounts of text cause more than one key to match. With
only four bits in the key, and only four-bit text strings,
many overlapping keys were encountered. This issue can
be handled either by enlarging the text busses to provide
a longer text string or by introducing extra logic into the
processors such that the system can iterate on small text
strings until the unique, correct key is established. This
second approach was taken in the four-bit DES cracker built
to test the machine design. This approach requires that each
processor maintains a single piece of information, namely,
whether the key has successfully matched all substrings of
the text. A flip flop was added to the processor to maintain
this one bit of state information, and some additional logic
was added to correctly set this signal. State information
requires some synchronization so that cells properly set and
read their states. This synchronization is accomplished by
two extra input signals added to the basic design, as shown in
figure 13. The init input signal indicates to the processor that
it should clear its state bit; the strobe signal is used to tell the
processor to perform the ‘Match?’ function. The strobe signal
ensures that the comparison between cipher text and plain text
will not occur until both text inputs are in step and valid to
compare.

A Cell Matrix implementation of the processor design is
shown in figure 14. Each processor takes about 2500 cells;
the circuit could have been compacted, but was instead built in
a scalable fashion. No advantage was taken of any particular

227

L J K Durbeck and N J Macias

R
ow

 0=
K

ey 2
R

ow
 1=

K
ey 3

Plain Text In 0
Plain Text In 1
Plain Text In 2
Plain Text In 3
Cypher Text In 0
Cypher Text In 1
Cypher Text In 2
Cypher Text In 3

Match ID Out 0
Match ID Out 1
Match ID Out 2
Match ID Out 3

Init In

Match Out

Col 0=Key 0
Col 1=Key 1

Unique Out

Strobe In

Basic Block Algorithm:

o If INIT then Set F/F

o If STROBE and not MyMatch
then Clear F/F

o If Strobe and MyMatch and
F/F then Set MatchOut and Set
MatchIDOut

o If NotUniqueIn then Set
NotUnique Out

o If [MatchWIn and MatchSIn
and MatchWID <> MatchSID] or
[MyMatch and MatchWIn and
MyMatchID <> MatchWID] or
[MyMatch and MatchSIn and
MyMatchID <> MatchSID] Then
Set NotUnique

Plain Text Out 0
Plain Text Out 1
Plain Text Out 2
Plain Text Out 3

Cypher Text Out 0
Cypher Text Out 1
Cypher Text Out 2
Cypher Text Out 3

Match ID In 0
Match ID In 1
Match ID In 2
Match ID In 3

Match In

Col 0=Key 0
Col 1=Key 1

Unique In

Strobe Out

P
lain Text O

ut 0
P

lain Text O
ut 1

P
lain Text O

ut 2
P

lain Text O
ut 3

C
ypher Text O

ut 0
C

ypher Text O
ut 1

C
ypher Text O

ut 2
C

ypher Text O
ut 3

M
atch ID

 In 0
M

atch ID
 In 1

M
atch ID

 In 2
M

atch ID
 In 3

M
atch In

C
ol 0=

K
ey 0

C
ol 1=

K
ey 1

U
nique In

S
trobe O

ut
Init O

ut

Init Out

P
lain Text In 0

P
lain Text In 1

P
lain Text In 2

P
lain Text In 3

C
ypher Text In 0

C
ypher Text In 1

C
ypher Text In 2

C
ypher Text In 3

M
atch ID

 O
ut 0

M
atch ID

 O
ut 1

M
atch ID

 O
ut 2

M
atch ID

 O
ut 3

Init In

M
atch O

ut

U
nique O

ut

S
trobe In

Figure 14. Implementation of four-bit key finder processor on a Cell Matrix.

aspects of the algorithm. For example, if a four-bit permutation
only involved swapping two bits, a full four-bit permutation
block was still built. Therefore the circuit is laid out as if it
were a 56- or 64-bit circuit, and enlarging it is a straightforward
process. The four-bit DES circuit was tested on a Cell Matrix
simulator that runs on a desktop PC. The circuit was tested
with a range of key values and text strings to ensure that both
the processor design and its implementation were correct.

It is interesting to observe the signalling that occurs
during the circuit’s operation, and the parallel operation of
the processors becomes evident to the viewer. An animation
generated from screen captures will be available on our web
site.

2.2.4. Performance and costs. The chief cost for the DES
cracker is not time, as it is with CPU/memory architectures.
Instead the chief cost is hardware. The point of spatially
distributed algorithms is to efficiently ‘throw hardware’ at a

time-consuming search space problem by breaking it down into
smaller tasks performed in parallel over a large Cell Matrix.
Overall circuit size is dictated both by the problem size and the
amount of hardware available. For four-bit-long keys, there are
24 possible keys, and a 2D configuration of processors is only
4 × 4. For keys that are 56 bits long, there are 256 possible
keys. Representing all keys at once, one per processor, takes
about 1017 processors. In a three-dimensional configuration,
the sides of a cube that contain all 1017 processors are just under
417 000 processors wide in each direction. Each processor
requires about 4 million cells, resulting in a total of roughly
3×1023 cells in the full 56-bit machine. Note that this number
is a maximum, in that it assumes that each processor handles
only one key.

The algorithm and circuit design presented here can test
all possible keys in parallel, and therefore require no looping.
This is the opposite end of the space/time spectrum from a
single-processor system, which requires only a small amount

228

The Cell Matrix: an architecture for nanocomputing

of hardware but must loop 256 times, testing one of each of
the possible keys per loop. In the Cell Matrix implementation,
there is no looping, and a huge amount of hardware is used.
This is basically loop unrolling.

The actual time required to process all keys depends on
two components. First is the time required for one processor
to test its unique key. The DES algorithm, as implemented
here, involves no looping. It is a purely combinatorial circuit.
The plain text and key go into one end, and the encrypted text
comes out the other. Its execution time is thus a pure function
of propagation delay. For a single 56-bit DES processor,
organized in a 160 × 160 × 160 cube of Cell Matrix cells, the
total path length from input to output might be approximately
32 000 cells. Therefore, if the propagation delay from cell to
cell is t , the total time to encrypt one block of text (56 bits, or
eight characters) would be 32 000∗t .

This is likely a negligible amount of time, compared to the
second factor in execution speed, which is the total propagation
delay throughout the network of individual processors. A
three-dimensional 56-bit machine is a cube with 417 000
processors on each side. Each processor is 160 × 160 × 160,
so the total size of the cube is 66 720 000 cells per side. The
longest path through the cube is from one corner to the other,
which traverses the width of the cube three times (once in each
direction), and thus passes through roughly 200 million cells.
Assuming a one picosecond propagation delay from cell to cell,
this corresponds to 200 ms. This means 5000 blocks of text can
be processed (i.e. cracked) per second. Each block contains
eight characters, so this amounts to 40 000 characters per
second, sufficient for analysing text transmitted at 256 K baud.

Configuration time must also be considered, since the DES
cracker circuit must first be set up on the hardware. Computing
actual configuration time depends heavily on the underlying
technology: how fast circuits can be clocked, how stable the
clocking is, and so on. However, it is useful to compare orders
of magnitude. For the purpose of discussion, assume a single
DES processor (which tests a single key) can be configured
in 10 ms. Because of the ability to build circuits in parallel,
this time also represents the time to build each generation of
processors. Since all 256 processors can be configured in only
417 000 generations, the entire machine can be configured in
under 5 s. Remember, this is a one-time cost. Once you
have configured the machine, it then operates at a much higher
speed (256 K as described above). In contrast, on a sequentially
configured system, such as an FPGA, assuming the same 10 ms
configuration time per processor, configuring all 256 processors
would require more than 22 000 years.

2.2.5. DES example summary. On a Cell Matrix, the
algorithm and machine can be constructed to efficiently
distribute a search space over a large number of custom
processors. The construction of all the processors can be
done in parallel (efficiently) on a Cell Matrix. Processor
network topology and interprocessor communication can be
hand crafted. Note that these are not general purpose CPUs,
but are simple, special-purpose processors that are designed
specifically for this algorithm. They do not receive instructions
to execute, as CPUs do; rather, they are hardwired to execute
their specific function as quickly as possible.

This solution is also quite flexible, in that the degree
of loop unrolling can be changed, depending on hardware
availability. If 1023 cells are not available, then the same
algorithm can be run on a smaller number of processors, where
each processor is responsible for a set of possible keys rather
than a single key. Of course, in this case, each processor will
need to loop through the set of keys.

This solution can also be adapted to work on partially
faulty hardware. Faulty blocks can be detected and avoided
during configuration, and dynamic key assignment during
configuration can be made to take into account missing blocks.
Transmission of information throughout the machine is already
redundant by design, and in general, a missing block will not
prevent nearby blocks from receiving or transmitting within
the network.

The spatially distributed circuit and algorithm described
here for DES cracking appears to be a good general approach
to large-search-space problems. The approach is applicable
elsewhere, to many different problems. Coupled with a method
for fabricating extremely large cell matrices, these circuits will
greatly improve upon the solution times for very large-search-
space problems. They also provide a good application for
trillion trillion switch computing, and an additional motivation
for the fabrication of the Cell Matrix architecture, in that what
they do is not possible on conventional computers.

In the case of the 56-bit DES cracker presented here, the
circuit roughly corresponds to a multiple-instruction, single-
datum (MISD) computing architecture, which until now has
mostly been a theoretically useful construct with no concrete
examples (Chalmers and Tidmus 1996). The plain and cipher
text are the single data, and the processors perform the
multiple instructions, in that each processor interprets the data
differently, based on its internally generated key. The MISD
analogy appears to hold for only a subset of spatially distributed
circuits, because the processors used need not be identical.

3. Conclusions/discussion

This paper presents the structure and function of the
Cell Matrix architecture in terms of its applicability to
nanocomputing. The architecture is structurally simple but
as computationally complex as is required by the problem
being solved. The physical hardware is fixed, and its function
is specified by configuring memory held at each hardware
node. Examples are provided to demonstrate the wide range
of circuits that can be built on a Cell Matrix, and to show that
it is a small leap from a schematic diagram to a Cell Matrix
configuration.

The Cell Matrix architecture has many benefits. It is easier
to manufacture than other computing architectures because of
its completely regular structure. It is easier to use than cellular
automata, faster to configure than FPGAs, more scalable than
FPGA or CPU/memory architectures, and it is inherently fault
tolerant.

The applicability of the architecture to the huge switch
counts that atomic-scale fabrication will eventually provide is
also explored. This applicability arises out of the architecture’s
distributed, local, parallel control. A circuit is presented
which appears to successfully organize about 1026 switches
into a circuit which operates without looping. This fast

229

L J K Durbeck and N J Macias

circuit was achieved by the development of what we term
spatially distributed algorithms and circuits. These circuits
take advantage of inherent properties of the architecture to
customize the hardware and to do so efficiently.

4. Future work

The DES cracking application presented here is just one
example of what is actually a wide variety of exciting research
that one can undertake with this architecture. A similar style
of circuit is currently being developed for quickly finding the
root of a function of the form f (x) = n. We continue to
work toward making cell matrices more widely accessible
to more people for more problems by developing tools,
methodologies, supporting circuits and cell libraries. We also
continue research in useful applications of dynamic circuits
and the architecture’s ability to examine and modify itself. In
particular, we see a need for distributed, local fault handling
so that extremely large systems can successfully run despite
faults. The relative importance of fault handling will increase
dramatically with the increased rate of fault occurrences in
trillion trillion switch systems. To begin to address this we are
developing onboard autonomous fault detection and repair that
takes advantage of available undamaged cells. A larger goal is
a general strategy and encapsulated circuitry so that all large
circuits can easily incorporate fault tolerance.

There are many other interesting research areas to which
this architecture can be applied. One general area involves
the development of ideal circuits for problems that are time
consuming on conventional hardware such as operations on
large matrices, wide bit arithmetic and simulations of complex,
three-dimensional phenomena. The usefulness of the Cell
Matrix architecture in the field of evolvable hardware, where
circuits are dynamically constructed and modified using a
genetic algorithm approach, has been suggested by researchers
in that field (de Garis 1999, Miller 2000). A sample application
of the Cell Matrix to this field is given by Macias (1999).
Current research in artificial brain building is also likely to
benefit from the architecture’s unique self-modification and
support of internal monitoring. A good deal of research in

self-organizing, self-optimizing systems is also possible using
this architecture, and we have barely scratched the surface of
this potential.

Acknowledgment

The authors gratefully acknowledge the reviewers’ helpful
comments in preparing the final manuscript.

References

Bishop F 1996 A description of a universal assembler Proc. IEEE
Int. Joint Symp. on Intelligence and Systems (Rockville, MD,
1996)

Chalmers A and Tidmus J 1996 Practical Parallel Processing
(Thompson)

Collier C P et al 1999 Electronically configurable molecular-based
logic gates Science 285 391–4

de Garis H 1999 Review of proceedings of the first NASA/DoD
workshop on evolvable hardware IEEE Trans. Evol. Comput. 3

Drexler K E 1988 Rod logic and thermal noise in the mechanical
nanocomputer Molecular Electronic Devices ed F L Carter,
R Siatkowski and H Wohltjen (Amsterdam: North-Holland)

——1992 Nanosystems: Molecular Machinery, Manufacturing, and
Computation (New York: Wiley)

Freitas R A Jr 1999 Nanomedicine Landes Bioscience section 10.2.2
IBM 1999 Blue Gene to Tackle Protein Folding Grand Challenge

webpage http://www.research.ibm.com/bluegene/
press release.html

Joy B 1992 The future of computation Papers from the 1st Foresight
Conf. on Nanotechnology ed B C Crandall and J Lewis

Macias N 1999 Ring around the PIG: a parallel GA with only local
interactions coupled with a self-reconfigurable hardware
platform to implement an O(1) evolutionary cycle for evolvable
hardware Proc. 1999 Congress on Evolutionary Computation

Mead C 2000 Comments Made During the 2nd NASA/DoD Conf. on
Evolvable Hardware (Palo Alto, CA, 2000)

Miller J 2000 Review: first NASA/DOD workshop on evolvable
hardware 1999 Genetic Programming and Evolvable Machines
vol 1, ed A Stoica, D Keymeulen and J Lohn pp 171–4

NIST 1993 Announcing the standard for Data Encryption Standard
(DES) Federal Information Processing Standards Publication
46-2

von Neumann J 1966 Theory of Self-Reproducing Automata
(Urbana, IL: University of Illinois Press)

230

