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ABSTRACT 
 
The paper deals with properties of the totally distributed 
genetic algorithm RGA, initially designed for the PIG 
cellular system. We have adopted the algorithm to a mesh 
of processors. Simulations were performed using Transim 
tool in order to investigate performance of this new RGA 
algorithm independently of a given application. This way, 
characteristics such as efficiency, speedup, communication 
delays, the influence of chromosome length and fitness 
calculations are easily evaluated beforehand.   
 
INTRODUCTION 
 
The biological principles like evolution or development, 
known from nature, have not been only applied at software 
level, but in last years also directly in hardware. Thus new 
approaches such as evolvable hardware (Sanchez and 
Tomassini 1996), cellular programming (Sipper 1997) or 
embryonic electronics (Mange et al. 2000) have been 
introduced. The PIG is one of the newest cellular 
architectures. Typical features and problems of such 
architectures are discussed in (Sekanina and Drábek 2000). 
The RGA is a parallel variant of genetic algorithm, 
developed for the PIG. The RGA is completely 
implemented using the cells of the PIG and, furthermore, 
the cells are the subjects of evolution. 
We have adopted this new "micro-world" genetic algorithm 
to the "macro-world" of the common processors. The 
Transim simulation tool was used to investigate the system 
performance. Simulations allowed us to uncover properties 
of the RGA for a given system parameters (as a processor 
frequency, communication delays or chromosome length). 
The proposed simulation model can be used for decision 
about usability of the RGA for a given application. 
 
THE PIG ARCHITECTURE 
 
Quite a new computational architecture – Processing 
Integrated Grid PIG (US patent #5886537) – was initially 
presented at the First NASA/DoD Workshop on Evolvable 

Hardware in 1999 (Macias 1999a). Its idea and features 
resounded in many other papers, e.g. (de Garis 1999, Miller 
2000). The PIG is a large two-dimensional array of identical 
configurable cells. In future, the cellular array should 
consist of billions of cells. Each cell communicates locally 
only with its four neighbors, see Figure. 1. Similarly to a 
cellular automaton, the computation is done synchronously, 
in parallel and in discrete time steps. Two neighbors are 
connected using two (input and output) data wires and two 
(input and output) control wires.  
 
In data mode (i.e. all control inputs are deactivated), the 
cell operates as a pure combinational circuit, which reads its 
four D-inputs, uses them as an index to its truth table (to 
select one of 16 rows) and determines a set of eight output 
values to be presented on the four D- and four C-outputs. In 
the control mode (i.e. when at least one control input is 
activated), D-inputs are serially shifted into the cell’s 
internal truth table, according to system-wide clock. This 
allows one cell to write another cell’s internal truth table, 
which subsequently affects that cell’s behavior when it 
returns to the data mode. Additionally, as the new truth 
table is shifted into the cell, the cell’s prior truth table is 
shifted out on its D-outputs, and is available for reading. 
This way, a cell can configure any other cell in the array. 
 
The PIG is infinitely scalable, massively parallel, self-
configurable architecture with features of a dataflow 
machine. Because of the PIG’s distributed configuration 
control, it can be used to study not only parallel execution 
of algorithms in hardware, but also parallel reconfiguration 
of hardware. Moreover, the PIG can implement circuits, 
which create new circuits, which themselves create and 
modify other circuits. But, how shall a designer find the 
tables of the cells? Due to massive parallelism, the 
traditional programming approach fails. An evolutionary 
algorithm is usually used to find tables of the cells for a 
given task (Sipper 1997). Some evolutionary designs (as 
replicators, counters, and guards) have been successfully 
created and then stored in libraries to be reused in other 
projects (Macias 1999b). The next section summarizes 
typical parallel implementations of the genetic algorithm 
and explains how the RGA is employed in the PIG. 
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Figure 1. A diagram of a single PIG's cells: (A) One control 
C and one data D bit are read from each neighbor of the 
cell. One control and one data bit are also sent to each 

neighbor. (B) Every cell operates according to its own table. 
In the data mode, the outputs are given by a row of the table 

determined by the actual combination of D inputs. In the 
control mode, the table is serially shifted in every system-

wide clock. 
 
PARALLEL GENETIC ALGORITHMS AND RGA 
 
Parallel implementations of evolutionary algorithms are 
summarized in (Cantú-Paz 1999, Tomassini 1999). The 
following approaches are usually used: (1) Parallel 
execution of fitness calculation (individuals are divided 
among processors), (2) the same algorithm is executed on 
many processors and the best solution is considered, (3) the 
population is divided into subpopulations (demes), which 
evolve concurrently and from time to time exchange the 
best genetic material and (4) individuals are collected in the 
mesh and only local interaction during evolution (genetic 
operations) is permitted. 
 
The RGA (Ringed Genetic Algorithm) (Macias 1999b) is a 
kind of parallel genetic algorithm of the class (4), which 
was implemented in the PIG. The standard genetic 
algorithm is not scalable well, since the execution time 
depends linearly on the size of population. In case of total 
hardware implementation, all individuals have to be 
presented in hardware and, therefore, they could be 
evaluated in parallel. It means that the logic for fitness 
calculation and genetic operations have to be distributed 
along individuals. Truth tables of several cells are evolving 
subjects in the case of the RGA in the PIG. Thus, 
distributed reconfiguration of hardware has to be requested, 
too. The PIG is able to ensure all these requirements and the 

calculation of the new population at constant time 
complexity. 
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Figure 2. Phases of the RGA. The arrows show the 

communication partners and a direction of communication 
for every cell: (A) Local communication on the circle. A 

central individual is not used. (B) Communication between 
circles. The white-marked individuals (writers) rewrite 

genetic information of the gray-marked individuals 
(readers). 

 
Figure 2 shows a population of 9 x 9 individuals organized 
in a mesh. An individual (a single square in the Figure 2) 
consists of several cells (whose tables are subjects to 
evolution), a logic for communication with neighbors, a 
logic for fitness calculation and a logic for execution of 
genetic operations (crossover and mutation). All that is 
implemented using only the cell as a building block. A 
genetic algorithm is distributed totally – individuals operate 
autonomously and concurrently. The shifting of the truth 
tables allows entire groups of cells to “travel” in the mesh 
and to exchange genetic information among neighbors. 
Fitness calculations as well as genetic operations are 
performed in parallel – independently of the size of 
population. Only the simulation model of RGA (written in 
C++) exists nowadays. The evolution is executed in two 
phases, until the 100%-quality solution appears: 



 

Phase #1: The individuals communicate on circles around 
and except the central individual. When the first population 
is generated (randomly, in parallel), the fitness values are 
calculated. A repetition of the genetic operations among the 
neighbors on the same circle (with consequent fitness 
calculations) will ensure that several high-quality 
individuals will travel around circles. The crossover is 
applied only to individuals with similar quality. In case of 
great differences, a worse-quality individual is replaced by a 
better one. The number of these interactions is fixed. 
 
Phase #2: The genetic information is exchanged between 
circles in parallel and in one step. Individuals are divided 
into readers and writers. A writer will use its own genetic 
information to replace reader’s genetic information (Figure 
2b). The central individual operates as a writer and sends 
randomly generated genetic information to its four 
neighbors to ensure diversity of population. 
 
THE RGA IN THE MESH OF PROCESSORS 
 
Inspired by the previous architecture, we applied an idea of 
RGA to the mesh of common processors. The processor 
manages just one individual, calculates its fitness, 
communicates with neighbors and performs local genetic 
operations. In other words, a single processor simulates a 
group of the cells and communication cables between 
processors simulate another group of PIG's cells! We do not 
investigate the efficiency of evolution for a single particular 
problem, but efficiency of architecture and communication 
for a class of applications. 
 
To estimate system performance, Transim simulation tool 
was used. Transim (Hart 1993) is a case tool intended to 
give guidance on performance issues early in the design 
stages of a parallel processing project, to allow rapid 
prototyping and conceptualization. The simulation model in 
Transim is written in the subset of Occam language. 
Transim can simulate a single processor or a complex 
network.  It can simulate a single process or a large 
application in which many individual processes are to be 
active on each processor (a processor is often termed a 
'node' in Transim parlance).  Parallel execution, alternation, 
channel communication, time-slicing, priorities, 
interruption, concurrent operation of links and the effects of 
external memory are taken into account. 
 
A mesh topology is modeled. Six channels (two for intra-
ring and four for inter-ring communications) are associated 
with each of N x N processors (only an odd N and N � 3 
may be used). In the initialization phase, based on the 
spatial location, the processor determines its neighbors in 
the ring, neighbors for the inter-ring communication and its 
role (writer, reader, central). Four inter-ring channels are 
not used effectively, but on the other hand, the simulation 
model is transparent. These four channels are used only by 

the central processor, two channels are used by diagonal 
processors, one channel by other writers while readers will 
not use any of them. This incongruity brings some difficulty 
to simulation. Procedure SERV, which is activated in case 
of useful processor’s operation, simulates the time of fitness 
calculation and genetic operations inside the ring. 
Communication time depends on the number of transferred 
bytes of fitness values and neighbor’s genetic information. 
The phase #2 is only one parallel communication in which 
reader’s genetic information is replaced. The source code of 
the simulation model is available on request. 
 
PERFORMED SIMULATIONS 
 

The goal is to investigate large space of possible 
applications for the RGA adopted in common processors 
and to determine a class of applications suitable for RGA. 
Table 1 summarizes main parameters used in simulations. 
Many experiments have been performed – the following 
Figures 3a-d show how efficiency depends on a selected 
parameter while the other parameters remain constant and 
set up according to Table 1. 
 

Table 1: Parameters of the simulation model 
 

Value Description 
20MHz Processor’s frequency 
20Mbit/s External channel speed 
9x9=81 Processors in a mesh 
36 A number of intra-ring communications 
32 Chromosome length in bytes 
1024 CPU’s clocks for fitness calculation 
2 Byte count of fitness 
100 CPU’s clocks for genetic operations 

 
 

 
Figure 3a. The dependence of speed up and the efficiency 
on the number of used processors. N x N processors are 

used in the mesh. N = 3, 5, 7, 9, 11 (for values in Table 1). 
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Figure 3b. The dependence of  efficiency on the time of 

fitness calculation (for values in Table 1). 
 
 
 

 
Figure 3c. The dependence of the efficiency on the 

chromosome length (for values in Table 1). 
 
 
 

 
Figure 3d. The dependence of the efficiency on the external 

channel speed (for values in Table 1). 
 
 

RESULTS 
 
Experiments show that: 

• Efficiency is constant, independently of the population 
size (i.e. the number of processors used). The problem 
is excellently scalable. Only the central processor in the 
phase #1 and writing processors at the boundary (in the 
phase #2) are not used. In practical applications, the 
central processor can be omitted and its neighbors will 
fulfill its role (of a random chromosome generator). 

• The RGA will be excellent in applications with very 
time consuming fitness calculation (e.g. in the field of 
evolvable hardware). In case of simple fitness 
calculation, the communication overhead will be 
dominant. Communications can not be overlapped by 
some useful calculations.  

• Increasing length of chromosomes leads to decreasing 
of efficiency. 

• Optimal efficiency was reached in case of at least the 
same speed of communication lines [Mbit/s] and 
processors [MHz]. 

• An unconventional processor count in the RGA can be 
sometimes disadvantageous. 

 
CONCLUSIONS 
 
We have applied unconventional kind of parallel genetic 
algorithms to the mesh of processors and investigated 
system efficiency. The main problem was to simulate 
irregularity of communications. The proposed model allows 
realistic performance prediction for a given application and 
system parameters. The user can easily estimate application 
performance and thus decide on benefits of RGA for a 
given application. The class of RGA applications mainly 
includes such applications where the fitness calculation is 
the most time consuming operation. We are going to use 
RGA for some evolvable hardware based applications in 
future. 
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