

A TOTALLY DISTRIBUTED GENETIC ALGORITHM:
FROM A CELLULAR SYSTEM TO THE MESH OF PROCESSORS

Lukáš Sekanina and Václav Dvo�ák

Department of Computer Science and Engineering
Brno University of Technology
Bo�et�chova 2, 612 66 Brno,

Czech Republic
E-mail: sekanina@dcse.fee.vutbr.cz

KEYWORDS
Distributed processors, simulators, special-purpose
processors, performance analysis.

ABSTRACT

The paper deals with properties of the totally distributed
genetic algorithm RGA, initially designed for the PIG
cellular system. We have adopted the algorithm to a mesh
of processors. Simulations were performed using Transim
tool in order to investigate performance of this new RGA
algorithm independently of a given application. This way,
characteristics such as efficiency, speedup, communication
delays, the influence of chromosome length and fitness
calculations are easily evaluated beforehand.

INTRODUCTION

The biological principles like evolution or development,
known from nature, have not been only applied at software
level, but in last years also directly in hardware. Thus new
approaches such as evolvable hardware (Sanchez and
Tomassini 1996), cellular programming (Sipper 1997) or
embryonic electronics (Mange et al. 2000) have been
introduced. The PIG is one of the newest cellular
architectures. Typical features and problems of such
architectures are discussed in (Sekanina and Drábek 2000).
The RGA is a parallel variant of genetic algorithm,
developed for the PIG. The RGA is completely
implemented using the cells of the PIG and, furthermore,
the cells are the subjects of evolution.
We have adopted this new "micro-world" genetic algorithm
to the "macro-world" of the common processors. The
Transim simulation tool was used to investigate the system
performance. Simulations allowed us to uncover properties
of the RGA for a given system parameters (as a processor
frequency, communication delays or chromosome length).
The proposed simulation model can be used for decision
about usability of the RGA for a given application.

THE PIG ARCHITECTURE

Quite a new computational architecture – Processing
Integrated Grid PIG (US patent #5886537) – was initially
presented at the First NASA/DoD Workshop on Evolvable

Hardware in 1999 (Macias 1999a). Its idea and features
resounded in many other papers, e.g. (de Garis 1999, Miller
2000). The PIG is a large two-dimensional array of identical
configurable cells. In future, the cellular array should
consist of billions of cells. Each cell communicates locally
only with its four neighbors, see Figure. 1. Similarly to a
cellular automaton, the computation is done synchronously,
in parallel and in discrete time steps. Two neighbors are
connected using two (input and output) data wires and two
(input and output) control wires.

In data mode (i.e. all control inputs are deactivated), the
cell operates as a pure combinational circuit, which reads its
four D-inputs, uses them as an index to its truth table (to
select one of 16 rows) and determines a set of eight output
values to be presented on the four D- and four C-outputs. In
the control mode (i.e. when at least one control input is
activated), D-inputs are serially shifted into the cell’s
internal truth table, according to system-wide clock. This
allows one cell to write another cell’s internal truth table,
which subsequently affects that cell’s behavior when it
returns to the data mode. Additionally, as the new truth
table is shifted into the cell, the cell’s prior truth table is
shifted out on its D-outputs, and is available for reading.
This way, a cell can configure any other cell in the array.

The PIG is infinitely scalable, massively parallel, self-
configurable architecture with features of a dataflow
machine. Because of the PIG’s distributed configuration
control, it can be used to study not only parallel execution
of algorithms in hardware, but also parallel reconfiguration
of hardware. Moreover, the PIG can implement circuits,
which create new circuits, which themselves create and
modify other circuits. But, how shall a designer find the
tables of the cells? Due to massive parallelism, the
traditional programming approach fails. An evolutionary
algorithm is usually used to find tables of the cells for a
given task (Sipper 1997). Some evolutionary designs (as
replicators, counters, and guards) have been successfully
created and then stored in libraries to be reused in other
projects (Macias 1999b). The next section summarizes
typical parallel implementations of the genetic algorithm
and explains how the RGA is employed in the PIG.

 DN CN DN CN

 DS CS DS CS

DW
CW
DW
CW

DE
CE
DE
CE

(A)

DN DS DW DE CN CS CW CE DN DS DW DE

inputs outputs

shiftable combinational
table

 0 0 0 0
. . . .
1 1 1 1

(B)

Figure 1. A diagram of a single PIG's cells: (A) One control
C and one data D bit are read from each neighbor of the
cell. One control and one data bit are also sent to each

neighbor. (B) Every cell operates according to its own table.
In the data mode, the outputs are given by a row of the table

determined by the actual combination of D inputs. In the
control mode, the table is serially shifted in every system-

wide clock.

PARALLEL GENETIC ALGORITHMS AND RGA

Parallel implementations of evolutionary algorithms are
summarized in (Cantú-Paz 1999, Tomassini 1999). The
following approaches are usually used: (1) Parallel
execution of fitness calculation (individuals are divided
among processors), (2) the same algorithm is executed on
many processors and the best solution is considered, (3) the
population is divided into subpopulations (demes), which
evolve concurrently and from time to time exchange the
best genetic material and (4) individuals are collected in the
mesh and only local interaction during evolution (genetic
operations) is permitted.

The RGA (Ringed Genetic Algorithm) (Macias 1999b) is a
kind of parallel genetic algorithm of the class (4), which
was implemented in the PIG. The standard genetic
algorithm is not scalable well, since the execution time
depends linearly on the size of population. In case of total
hardware implementation, all individuals have to be
presented in hardware and, therefore, they could be
evaluated in parallel. It means that the logic for fitness
calculation and genetic operations have to be distributed
along individuals. Truth tables of several cells are evolving
subjects in the case of the RGA in the PIG. Thus,
distributed reconfiguration of hardware has to be requested,
too. The PIG is able to ensure all these requirements and the

calculation of the new population at constant time
complexity.

A

B

Figure 2. Phases of the RGA. The arrows show the

communication partners and a direction of communication
for every cell: (A) Local communication on the circle. A

central individual is not used. (B) Communication between
circles. The white-marked individuals (writers) rewrite

genetic information of the gray-marked individuals
(readers).

Figure 2 shows a population of 9 x 9 individuals organized
in a mesh. An individual (a single square in the Figure 2)
consists of several cells (whose tables are subjects to
evolution), a logic for communication with neighbors, a
logic for fitness calculation and a logic for execution of
genetic operations (crossover and mutation). All that is
implemented using only the cell as a building block. A
genetic algorithm is distributed totally – individuals operate
autonomously and concurrently. The shifting of the truth
tables allows entire groups of cells to “travel” in the mesh
and to exchange genetic information among neighbors.
Fitness calculations as well as genetic operations are
performed in parallel – independently of the size of
population. Only the simulation model of RGA (written in
C++) exists nowadays. The evolution is executed in two
phases, until the 100%-quality solution appears:

Phase #1: The individuals communicate on circles around
and except the central individual. When the first population
is generated (randomly, in parallel), the fitness values are
calculated. A repetition of the genetic operations among the
neighbors on the same circle (with consequent fitness
calculations) will ensure that several high-quality
individuals will travel around circles. The crossover is
applied only to individuals with similar quality. In case of
great differences, a worse-quality individual is replaced by a
better one. The number of these interactions is fixed.

Phase #2: The genetic information is exchanged between
circles in parallel and in one step. Individuals are divided
into readers and writers. A writer will use its own genetic
information to replace reader’s genetic information (Figure
2b). The central individual operates as a writer and sends
randomly generated genetic information to its four
neighbors to ensure diversity of population.

THE RGA IN THE MESH OF PROCESSORS

Inspired by the previous architecture, we applied an idea of
RGA to the mesh of common processors. The processor
manages just one individual, calculates its fitness,
communicates with neighbors and performs local genetic
operations. In other words, a single processor simulates a
group of the cells and communication cables between
processors simulate another group of PIG's cells! We do not
investigate the efficiency of evolution for a single particular
problem, but efficiency of architecture and communication
for a class of applications.

To estimate system performance, Transim simulation tool
was used. Transim (Hart 1993) is a case tool intended to
give guidance on performance issues early in the design
stages of a parallel processing project, to allow rapid
prototyping and conceptualization. The simulation model in
Transim is written in the subset of Occam language.
Transim can simulate a single processor or a complex
network. It can simulate a single process or a large
application in which many individual processes are to be
active on each processor (a processor is often termed a
'node' in Transim parlance). Parallel execution, alternation,
channel communication, time-slicing, priorities,
interruption, concurrent operation of links and the effects of
external memory are taken into account.

A mesh topology is modeled. Six channels (two for intra-
ring and four for inter-ring communications) are associated
with each of N x N processors (only an odd N and N � 3
may be used). In the initialization phase, based on the
spatial location, the processor determines its neighbors in
the ring, neighbors for the inter-ring communication and its
role (writer, reader, central). Four inter-ring channels are
not used effectively, but on the other hand, the simulation
model is transparent. These four channels are used only by

the central processor, two channels are used by diagonal
processors, one channel by other writers while readers will
not use any of them. This incongruity brings some difficulty
to simulation. Procedure SERV, which is activated in case
of useful processor’s operation, simulates the time of fitness
calculation and genetic operations inside the ring.
Communication time depends on the number of transferred
bytes of fitness values and neighbor’s genetic information.
The phase #2 is only one parallel communication in which
reader’s genetic information is replaced. The source code of
the simulation model is available on request.

PERFORMED SIMULATIONS

The goal is to investigate large space of possible
applications for the RGA adopted in common processors
and to determine a class of applications suitable for RGA.
Table 1 summarizes main parameters used in simulations.
Many experiments have been performed – the following
Figures 3a-d show how efficiency depends on a selected
parameter while the other parameters remain constant and
set up according to Table 1.

Table 1: Parameters of the simulation model

Value Description
20MHz Processor’s frequency
20Mbit/s External channel speed
9x9=81 Processors in a mesh
36 A number of intra-ring communications
32 Chromosome length in bytes
1024 CPU’s clocks for fitness calculation
2 Byte count of fitness
100 CPU’s clocks for genetic operations

Figure 3a. The dependence of speed up and the efficiency
on the number of used processors. N x N processors are

used in the mesh. N = 3, 5, 7, 9, 11 (for values in Table 1).

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140
processors

Speed up Efficiency

Figure 3b. The dependence of efficiency on the time of

fitness calculation (for values in Table 1).

Figure 3c. The dependence of the efficiency on the

chromosome length (for values in Table 1).

Figure 3d. The dependence of the efficiency on the external

channel speed (for values in Table 1).

RESULTS

Experiments show that:

• Efficiency is constant, independently of the population
size (i.e. the number of processors used). The problem
is excellently scalable. Only the central processor in the
phase #1 and writing processors at the boundary (in the
phase #2) are not used. In practical applications, the
central processor can be omitted and its neighbors will
fulfill its role (of a random chromosome generator).

• The RGA will be excellent in applications with very
time consuming fitness calculation (e.g. in the field of
evolvable hardware). In case of simple fitness
calculation, the communication overhead will be
dominant. Communications can not be overlapped by
some useful calculations.

• Increasing length of chromosomes leads to decreasing
of efficiency.

• Optimal efficiency was reached in case of at least the
same speed of communication lines [Mbit/s] and
processors [MHz].

• An unconventional processor count in the RGA can be
sometimes disadvantageous.

CONCLUSIONS

We have applied unconventional kind of parallel genetic
algorithms to the mesh of processors and investigated
system efficiency. The main problem was to simulate
irregularity of communications. The proposed model allows
realistic performance prediction for a given application and
system parameters. The user can easily estimate application
performance and thus decide on benefits of RGA for a
given application. The class of RGA applications mainly
includes such applications where the fitness calculation is
the most time consuming operation. We are going to use
RGA for some evolvable hardware based applications in
future.

REFERENCES

Cantú-Paz, E. 1999 "Designing Efficient and Accurate Parallel
Genetic Algorithm", PhD theses, University of Illinois.

de Garis, H. 1999. "Review of Proceedings of the First
NASA/DoD Workshop on Evolvable Hardware." IEEE
Transactions on Evolutionary Computation, Vol. 3, No. 4,
(Nov), 304–306.

Hart, E. 1993. Transim User Guide and Reference Manual,
Version 3.5, University of Westminster.

Macias, N. 1999a. "The PIG Paradigm: The Design and Use of a
Massively Parallel Fine-Grained Self-Reconfigurable
Infinitely Scalable Architecture." In Proc. of The First
NASA/DoD Workshop on Evolvable Hardware (EH’99),
Stoica, A., Keymeulen, D., Lohn, J. (Eds.). IEEE Computer
Society, Pasadena, California, 175–180.

Macias, N. 1999b. "Ring Around the PIG: A Parallel GA with
Only Local Interactions Coupled with a Self-Reconfigurable
Hardware Platform to Implement an O(1) Evolutionary Cycle
for EHW", Internet presentation of Cell Matrix Corporation,

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000
CPU periods for fitness calculation

efficiency

0

20

40

60

80

100

0 200 400 600 800 1000 1200
Length of chromosome [bytes]

efficiency

0

20

40

60

80

100

0 20 40 60 80 100
external channel speed [MB/s], cpu=20MHz const.

efficiency

URL:
http://www.cellmatrix.com/entryway/products/pub/publications.html

Mange, D. et al. 2000. "Towards Robust Integrated Circuits: The
Embryonic Approach." Proceedings of the IEEE, Vol. 88, No.
4, (Apr), 516 – 541.

Miller, J. F. 2000. "Review of the 1st NASA/DoD Workshop on
Evolvable Hardware 1999". Genetic Programming and
Evolvable Machines, Kluwer Academic Publishers,
Manufactured, Vol. 1, No. 1, 171–174.

Sanchez, E., Tomassini, M. 1996. "Towards Evolvable Hardware:
The Evolutionary Engineering Approach", LCNS 1062,
Springer-Verlag Berlin Heidelberg.

Sekanina, L., Drábek, V. 2000. "Relation Between Fault
Tolerance and Reconfiguration in Cellular Systems." In 6th
IEEE Int. On-Line Testing Workshop, Palma de Mallorca,
Spain, 25 – 30.

Sipper, M. 1997. Evolution of Parallel Cellular Machines: The
Cellular Programming Approach. Springer-Verlag Berlin
Heidelberg.

Tomassini, M. 1999. "Parallel and Distributed Evolutionary
Algorithms: A Review" In: Evolutionary Algorithms in
Engineering and Computer Science, K. Miettinen, M. Mäkelä,
P. Neittaanmäki and J. Periaux (eds), J. Wiley and Sons,
Chichester, 113–133.

ACKNOWLEDGEMENT

This research has been carried out under the financial
support of the Research intention no. CEZ: J22/98:
262200012 - Research in information and control systems.

BIOGRAPHY

LUKÁŠ SEKANINA received MSc degree in Computer
Science and Engineering from Brno University of
Technology, Czech Rep. in 1999. He was visiting lecturer at
Pennsylvania State University, USA in the spring semester
2001. Currently he is a PhD candidate at the Brno
University of Technology. His research interests focus on
evolvable hardware and cellular computational
architectures.
Email: sekanina@dcse.fee.vutbr.cz
WWW: http://www.fee.vutbr.cz/~sekanina

VÁCLAV DVORÁK received MSc and PhD degrees in
Electrical Engineering from Brno University of Technology
in 1963 and 1968. He was with Res. Inst. of Mathematical
Machines in Prague till 1973, and then Assoc. and Full
Prof. at Brno Univ. of Technology. Until now, he spent also
over 8 years with universities abroad (Canada, Malta,
Libya, New Zealand, Australia). His recent research
concentrated on advanced computer architecture and
parallel and distributed computing.
Email: dvorak@dcse.fee.vutbr.cz
WWW:http://www.fee.vutbr.cz/~dvorak

