
Ring Around the PIG: A Parallel GA with Only Local Interactions Coupled with a
Self-Reconfigurable Hardware Platform to Implement an O(1) Evolutionary Cycle

for Evolvable Hardware
From Proceedings of the 1999 Congress on Evolutionary Computation Copyright © 1999 IEEE

Nicholas J. Macias
nmacias@cellmatrix.com

Abstract. The use of GAs in evolvable hardware is re-
viewed. A case is made for implementing as much of the
GA in hardware as possible. The technical difficulties of
using a standard GA with an FPGA are described. A new
type of GA called a Ringed GA, which features only local
interactions among individuals, is introduced. A new type of
reconfigurable platform called the PIG is described. The use
of the PIG to support local, parallel GA operations is ex-
plained. Experiments in evolving digital circuits using a
ringed GA on the PIG are described. Conclusions and plans
for future work are presented.

1 Introduction

The past few years have seen much progress in the applica-
tion of genetic algorithms (GAs) [Koz92] to evolve digital
circuits. There are many approaches to implementing such
an algorithm. One is the all-software approach, with the
evolved circuits being simulated in software, as in [Kit96].
Such an approach has the advantage of being able to run on
an ordinary general purpose computer. However, since
digital circuits generally operate in parallel, such serial
simulations will be slower than the corresponding physical
circuit would be, and as a result, each cycle of the GA can
be prohibitively time consuming. A faster approach is to
introduce a reconfigurable hardware device, such as an
FPGA, and to cast each evolved circuit into hardware
[Hem94]. This allows faster evaluation of an individual
(digital circuit). Further speedups have been achieved by
implementing other GA operations, such as mating, directly
in hardware, leading to an all-hardware solution [Kaj98].

While an all-hardware approach shows significant im-
provement over an all-software or hybrid one, these solu-
tions still tend to be fundamentally serial. The evaluation
stage of the GA still involves evaluating each individual one
at a time, which takes more time as the population size in-
creases. Likewise for mating, which usually occurs one pair
at a time. Hence a standard GA does not scale very well, as
its execution time increases at least linearly with the popu-
lation size.

An all-hardware GA can be made faster by evaluating all
individuals simultaneously. This requires that all individuals
in the population must exist simultaneously in the hardware,
and that circuits for evaluating them must also be distributed
throughout that hardware. This of course requires a suffi-
ciently large hardware platform, which means the underly-

ing hardware should be highly scalable. Since selection and
mating are to occur in parallel across the population, these
operations must be distributed as well. Since their execution
time is to be independent of the population size, they should
be based only on local interactions. Finally, since the output
of mating is the creation of new digital circuits, the ability to
reconfigure the hardware must also be distributed through-
out the hardware itself. In other words, the hardware must
be self-reconfigurable.

The present work introduces software and hardware to
satisfy these requirements, which can be summarized as
follows:

1. The underlying hardware must be scalable, to support
large population sizes.

2. All GA operations must be based on local interac-
tions only, to avoid increasing complexity as the
population size grows.

3. The underlying hardware must be self-
reconfigurable, since the outcome of mating (which
is performed by the hardware itself) is the creation of
a new individual in that same hardware platform.

Sections 2 and 3 describe a new type of GA, called a
Ringed GA (RGA), which satisfies requirement 2. Section 4
describes a new type of reconfigurable device, the Process-
ing Integrated Grid or PIG (US Patent #5,886,537), which
satisfies requirements 1 and 3. Section 5 describes three
experiments in evolving digital circuits using an RGA on a
PIG. Section 6 states some conclusions and directions for
future work.

2 Evolving Digital Circuits: The Basic GA
Characteristics

The circuits to be evolved by the RGA are implemented on
a reconfigurable array of interconnected cells, with each
cell’s configuration specified by a 16-row 4-column truth
table. More details about these cells and their interaction
will be described in Section 4. For the purpose of explaining
the GA itself, the important fact is that each cell’s configu-
ration can be completely specified with 64 bits, representing
the output values of the cells’ truth table. By adopting an
ordering of the cells making up a circuit, we can represent
an n-cell circuit as a (64*n)-bit stream. These bitstreams are
the chromosomes of our circuits, and it is these bitstreams
which we mate and evolve in the GA.

There are several ways we can mate the bitstreams of
two circuits. RANDOM mating picks out bits from each
parent’s chromosome, randomly selecting which parent each
bit comes from. ROW mating selects entire rows from the
truth table of each parent, thereby selecting bits in groups of
four from one parent or the other. COLUMN mating is
similar, but preserves columns of each parent’s truth tables.

For the present work, ROW mating is the preferred style.
This style reflects the notion that a circuit which works
some of the time is actually operating correctly for certain
input combinations, i.e., for certain rows of its truth tables.

For any mating style, we can introduce a bias to favor
selection of bits from the parent with the higher fitness
level. A mutation rate, which expresses the probability of a
bit’s value being toggled, can be set to help maintain diver-
sity within the population. Further diversity is introduced
through the generation of random members, which are cre-
ated by generating random bitstreams. A bit probability can
be set to control the likelihood of a bit’s value being 1 or 0.

Scoring of a circuit’s fitness is done differently depend-
ing on the circuit being evolved, but generally involves sup-
plying test patterns to the circuits being tested, and com-
paring their outputs to the desired outputs. For simple com-
binatorial circuits, this might involve running the circuit
through all possible input combinations and counting the
number of times it produces the correct output. For sequen-
tial circuits, the circuit can be clocked and its outputs
checked at each time step. For complex circuits where such
exhaustive testing is prohibitive, it may be possible to care-
fully choose specific subsets of inputs to test, as is the case
for evolving minimal sorting networks [Koz98]. Since the
resulting score depends on how many input combinations
are used, the scores are normalized to range between 0 and
1000, inclusive, with higher scores representing better fit-
ness.

It must be stressed that this system evolves the actual
configuration strings for the underlying hardware, as op-
posed to only modifying the way a fixed hardware configu-
ration behaves. This is subtly different from, for example,
the Firefly system, which uses a fixed FPGA configuration
to implement a cellular automata (CA) machine, and then
evolves rule tables for the CA. In M. Sipper’s terms, Firefly
uses two types of genomes. The organism’s genome defines
a cell’s rule table, while the species’ genome defines the
underlying FPGA’s configuration [Sip97]. These two ge-
nomes are fundamentally different in their meaning and use.
In contrast, in the present work, the genomes of an evolving
circuit are exactly the same type as the genomes used to
implement the GA. There is no inherent hierarchy between
the circuits being evolved and the circuits running the evo-
lutionary algorithm. This suggests the possibility of a self-
evolving system, in which the evolutionary algorithm itself
undergoes modification.

3 The Ringed GA

A single evolutionary cycle of a traditional GA generally
proceeds as follows:

• Evaluate the fitness of each individual
• Compare the scores of all individuals against each

other
• Select a subset of the population based on those com-

parisons
• Mate certain pairs from this sub-population to form a

new generation

The time for evaluating all individuals grows linearly
with the population size, while comparing scores across the
population has an order greater than O(n). This is because
individuals are usually compared to all other members of the
population to pick out the most fit members. Mating also
grows linearly with the size of the sub-population.

Variations on a standard GA have been proposed to re-
duce the computational complexity of this cycle. One varia-
tion is the Island model, where evolution occurs in a set of
sub-populations, with gradual migration among the sub-
populations [Tom96]. Another is the Grid model, where
individuals are distributed throughout a regular grid, and
mating only occurs among nearby individuals. This locality
of interaction is attractive for parallel interaction, but may
lead to the development of semi-isolated niches [Tom].

The Ringed GA combines the best of both these models.
Individuals are physically located throughout the space of
the underlying hardware, and only physically-local interac-
tions occur, but there is still a gradual migration of indi-
viduals throughout the population.

Figure 1 shows the basic setup of a small universe con-
sisting of five rings. Each individual, which is actually a
multi-cell circuit, occupies a single square. The individuals
are arranged in concentric rings, with direct interaction oc-
curring only among immediately adjacent individuals.

Figure 1. A 5-ring 81-Member Universe for the Ringed GA.
Each box represents a single individual, containing a multi-cell
digital circuit. Each circuit is compared with its two neighbors

on the same ring.

Y X Z

The RGA begins with the creation of an initial popula-
tion of random members, one per box in figure 1. This is
done only once, as an initialization step at the start of the
evolutionary process. Once this is completed, a series of
evolutionary cycles are executed as follows:

1. The fitness of each member is computed. Note that
this occurs in parallel among all individuals.

2. The fitness of each individual is compare to the fit-
ness of its two immediate neighbors on the same ring.
In figure 1, the fitness of individual X would be com-
pared to that of individuals Y and Z. This also occurs
in parallel across the entire population.

3. Each individual executes a mating step as follows:
• If one of an individual’s neighbors is more fit than

itself, the individual mates with the most fit neigh-
bor, and is replaced by the child.

• If, however, the individual is more fit than either
neighbor, that individual remains unchanged.

There is one exception to these mating rules. If an in-
dividual is more fit than both its neighbors, and sig-
nificantly more fit than the neighbor immediately
counter-clockwise (meaning its fitness score is at
least 100 points higher), it is copied verbatim to that
less fit neighbor. This overrides any other mating op-
eration for that less-fit neighbor. So if X’s score was
at least 100 points higher than Y’s, Y would be re-
placed with an exact copy of X.

Again, all mating occurs simultaneously across the
population.

Steps 2 and 3, which collectively are called an intra-ring
cycle, are repeated a fixed number of times. The basic idea
is that adjacent individuals with similar fitness levels will
generally mate, while extremely fit individuals will tend to
propagate around the ring.

4. After a fixed number of these intra-ring cycles, an
inter-ring propagation occurs, as shown in figure 2.
This step begins with the generation of a new random
member in the innermost ring, followed by the
copying of certain members from inner rings to outer
ones, as indicated by the arrows in figure 2. Again,
this copying of individuals occurs entirely in parallel.
The idea of this step is to migrate the results of intra-
ring mating outward to the next larger ring. Diversity
is introduced by the random member in the innermost
ring, while the outer rings tend to be more homoge-
neous.

These steps are repeated until any individual achieves a
perfect score, at which time that individual’s circuit might
be copied off to some other location. Alternatively, the
evolutionary process could continue, to allow for continuous
evolution, in case the fitness function is changing over time.

For the present work, evolution stopped as soon as a perfect
score was detected.

While these steps are executed sequentially, each step
takes a fixed amount of time, since all operations across the
population occur in parallel. Each individual is responsible
for scoring itself, based on a set of globally-supplied input
and output data. Fitness comparisons occur only among
immediately adjacent neighbors, and are negotiated by those
neighbors themselves. Mating takes one of the following
forms:

• Mate with clockwise neighbor,
• Mate with counterclockwise neighbor,
• Copy clockwise neighbor to yourself, or
• Do nothing.

In any case, each individual handles its own mating, and
ultimately reprograms itself to take the form of the resulting
offspring. The interring propagation also occurs between
adjacent individuals, and is again handled by the individuals
themselves. Therefore, all GA operations can occur in par-
allel across the population.

4 The Underlying Hardware: The PIG

Key to all of this work is the underlying hardware platform.
This is a fundamentally new type of reconfigurable system,
called the Processing Integrated Grid, or PIG (US Patent
#5,886,537). The PIG is more than a reconfigurable device.
It is a hardware platform for general reconfigurable work.
Its key attributes are extreme parallelism, an infinitely scal-
able architecture, and the capacity for self-reconfiguration.
In the context of implementing an RGA, the first two attrib-
utes help support a large population size, while self-
reconfigurability allows the results of various operations to
result in the reconfiguration of new circuits. This distributed
reconfiguration control is essential for avoiding the bottle-
necks inherent in serial, externally-controlled reconfigu-
rables such as FPGAs.

Figure 2. Inter-Ring Propagation Step of RGA. The central ele-
ment is filled with a new random individual, which propagates to

and replaces four spots on second ring. Corner cells of second ring
propagate to 8 spots on third ring, and so on, as shown by arrows.

*

Y X Z

The PIG is composed of a regular collection of simple,
homogeneous processing elements called cells. Each cell
has four sides, labeled N, S, W and E, as shown in figure 3.
Each side has two inputs, C and D, and two outputs, also
labeled C and D. We will ignore the C inputs for now, and
assume they are always 0. Therefore a cell has four inputs
(DN, DS, DW and DE) and 8 outputs (CN, CS, CW, CE, DN, DS,
DW and DE), and thus its truth table has 16 rows and 8 col-
umns.

Any such truth table can be implemented by a cell, and

therefore a cell’s configuration can be represented by the
128 output bits of its truth table. Figure 4 shows a sample
cell, configured to realize the logical functions DN=DS,
DW=DW and DS=DN AND DE (all other outputs are 0). Table
1 shows the corresponding truth table for this configuration.

The PIG is organized as a regular two-dimensional array
of these cells. Each cell is connected to four immediate
neighbors, and exchanges two inputs and two outputs with
each neighbor, as shown in figure 5. From this viewpoint,

the entire PIG is simply a collection of configurable combi-
natorial circuits. However, the C inputs have a special pur-
pose. If a C input is set to 1, the receiving cell is reconfig-
ured based on its D inputs. Thus any cell can configure any
adjacent cell, and likewise can be configured by any of its
immediately adjacent neighbors. Cells may pass around
either plain data or reconfiguration information on the D
lines. The interpretation of the passed bits is not based on
the bits themselves, but rather on the C inputs to each cell.
This interchangeability of code and data facilitates numer-
ous dynamic operations, including the replication of cells,
the dynamic construction of circuits, and the analysis of a
cell’s configuration. These capabilities lead to possibilities
for such things as hardware libraries, virtual hardware, and
fault-handling hardware.

INPUTS OUTPUTS
DN DS DW DE CN CS CW CE DN DS DW DE

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 1 0 1 0
0 1 1 1 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 1 0 1 0
1 1 1 1 0 0 0 0 1 1 1 0

Table 1
Truth Table for Configuration shown in Figure 4

Figure 3. A Single PIG Cell. Each side has one input D and
two outputs C and D. C inputs (dotted arrows) are assumed

to be 0.

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DW

Figure 4. Sample Configuration of a PIG Cell corresponding to
Table 1. This configuration implements the functions DN=DS,

DW=DW and DS=(DE AND DN). All other outputs are 0.

DN

DS

DW

DW DE

DN

DS

Note that each cell in the PIG is only connected to its
four immediately adjacent neighbors. There is no direct
connection from one cell to any non-adjacent ones. If you
take two PIGs and attach them along an edge, you end up
with a larger PIG, which functions exactly like the originals.
You simply need to connect the C and D lines of the border
cells, along with a pair of control lines (which are distrib-
uted to all cells identically). There are no address space is-
sues or other impediments to scalability. Note that this has
important manufacturing implications.

Since we are trying to evolve relatively simple, conven-
tional circuits, we will assume that the C inputs and outputs
are always 0, and each cell of a circuit is a simple combina-
torial device. In this case, we only need to consider 64 bits
of the truth table, corresponding to the values of the four D
outputs. This is why the chromosome of each cell in a cir-
cuit is represented with only 64 bits. However, by simply
using a full 128 bits for each cell, we would be evolving
circuits which are capable of reconfiguring other cells.
This ability to evolve circuits which themselves can create
or modify other circuits reflects a fundamental property of
the PIG. Such circuits can not be evolved, for example, on
an FPGA, since the circuits which are configured inside the
FPGA have no paths to the FPGA’s configuration registers.

The individuals of the RGA are actually complex cir-
cuits, composed of multiple PIG cells. In general, there are
two pieces to these individuals. There is the actual evolving
circuit, which is what we usually talk about with respect to
the RGA, and there is all the control circuitry needed to
handle such things as mating, evaluation, etc. However, the

entire individual is implemented on an array of identical
PIG cells. No special hardware is used for any piece of the
individual. The only difference from one piece to another is
the configuration of the underlying cells. This is an impor-
tant feature to keep in mind. Figure 6 shows the basic con-
figuration of an individual. The figure only reflects an indi-
vidual located along the top (North) of a ring, and not situ-
ated in a corner. For other individuals, the orientation of the
I/O lines changes, but the internal circuitry is identical.

The Exploded Grid contains the actual circuit being
evolved, along with additional circuitry which allows indi-
vidual cell addressing. This grid is 9 times the size of the
circuit it contains, e.g., a 4x4 circuit would have a 12x12
Exploded Grid. Recall that a cell is only directly connected
to its four immediate neighbors, so in general, there is no
way to access a non-adjacent cell. The additional circuitry
within the Exploded Grid allows the circuit contained
therein to function normally, but also allows direct access to
each cell’s configuration. The Row and Col inputs select a
cell, current configuration data is read from the �out line, and
new configuration data is supplied via �in. The inputs to the
circuit under test are available on the In lines of the Ex-
ploded Grid, and the circuit’s outputs appear on the Out
lines. Thus the circuit within the Exploded Grid can be con-
figured, tested, and reconfigured as necessary

Again, it is important to note that, as with all circuitry in
figure 6, the Exploded Grid is not composed of any special
hardware. Its underlying hardware is identical to all other
hardware in the PIG. It is composed of a set of PIG cells,
identical to all other cells in the PIG, except for their con-
figuration data. Any special hardware requirements are met
through the appropriate configuration of PIG cells. This is
one of the PIG’s most important features.

The remainder of the circuitry in figure 6 supports direct
implementation of the RGA evolutionary cycle. The Row,
Col, Cmd, Input and Des Out lines of all individuals are
connected in parallel to a global controller. All other I/O
lines are connected to adjacent individuals. The output of
the evolving circuit is compared to the desired output, Des
Out, and the Score Register is adjusted accordingly. This
score is then compared to the scores of the individual’s two
neighbors, and a mating operation is chosen and recorded in
the Mating Op Reg. This is then used to combine configu-
ration information (truth tables) from the individual itself
and its neighbors and produce configuration data for a child
circuit, which is then loaded into the Exploded Grid. Inter-
ring propagation occurs similarly, with the �-Select Logic
choosing configuration information from an inner ring
where appropriate. Creation of a perfect individual is sig-
naled by the Perf line, and that individual’s configuration
can be read from the �Perf line.

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

DN CN DN CN

DS CS DS CS

CW

DW

CW

DW

CE

DE

CE

DE

Figure 5. Sample 3x3 grid.

Figure 6 is only one possible implementation of an indi-
vidual. Other than the Exploded Grid, the circuitry is just
standard digital logic, and the global controller is a simple
state machine. For example, the cells of the circuit within
the Exploded Grid are accessed one at a time (but in parallel
across all individuals). Other arrangements are possible,
including having multiple �-lines to allow an entire NxM
grid within the Exploded Grid to be reconfigured in parallel.
This is a classic space-time tradeoff. For the price of more
complex circuitry, you can achieve more parallelism.

With certain reconfigurable devices, there is a natural
flow of information from one side of the device to the other,
and thus circuits having unstable feedback paths are
avoided. On the PIG, there is no such natural flow direction.
This leads to the possibility of instabilities in a random cir-

cuit. Even for a simple 2-cell circuit, 12.5% of the possible
configurations are unstable. While circuits can easily be
built to detect and eliminate these instabilities, an easier
solution is to constrain the truth table of each cell. We adopt
a convention that for each cell, only the DS and DE outputs
may be non-zero. Thus, information tends to flow from the
NW corner to the SE corner of a rectangular circuit.

A prototype of the PIG has been built on a small scale.
However, its practical use requires an extremely large num-
ber of cells, which current technology is unable to manu-
facture cost-effectively. Still, the simplicity of each cell and
the regular interconnection scheme make the PIG an ideal
candidate for exploiting emerging technologies such as
nanotechnology [Dre86], biological computing [Lip96], and
bistable quantum dots [Len93]. For the present work, a PIG

Des Out

ScoreW

Col
Row

Input
Cmd

Exploded
Grid �-Select

Logic

Rnd
Gen

Mating
Control

I/O
Cmp

Score Reg Score
Cmp

Mating
Op Reg

Prop Tgt
Flag

[0,0]
FlagDes Out

Cmd

Perfect

�out

�S

�out �E

�out�W

ScoreE

Score

Score

�Perf

Perf

�Perf

PerfPerf
Sel

Cmd
�out

S
co

re

+

ScoreW

ScoreE

Cmd

�S

�out

�inOut

InInput Col
Row

�W

�E

�out

Cmd

Cmd

Cmd

Score

Figure 6. Single Individual for the RGA. Configuration shown and comments below are for individual along top of a ring and not in a
corner. Actual evolving circuit is stored in the Exploded Grid. Row, Col, Cmd, Input and Des Out come from global controller, and are
sent in parallel to all individuals. Cmd selects the RGA operation, Row and Col access individual PIG cells within the individual’s circuit,
Input is a test input, Des Out is the desired output from the circuit. All other I/O lines connect to immediately neighboring individuals. �
lines carry configuration information. Perf indicates an individual along the row has achieved a perfect score. Configuration of leftmost
perfect individual appears along �Perf.

Des Out

Col
Row

Input
Cmd

simulator was used for executing the individuals’ circuits,
while the GA operations themselves were implemented in
C. It is hoped however that this work on the ringed GA, as
well as work on other PIG applications, will provide incen-
tive for the subsequent development of a large-scale physi-
cal PIG.

5 Experiments and Results

Experiments were performed to evolve three different digi-
tal circuits. In all cases, the experiment ended with the evo-
lution of a circuit which performed the desired task per-
fectly. RGA parameters were chosen more or less at random
(but within reason), and were kept constant across all three
experiments. Specifically, when generating random indi-
viduals, a bit probability of 0.15 was used (meaning the
probability of a 1 was 0.15). In mating operations, the prob-
ability that a bit comes from the parent with the higher fit-
ness value was set to 0.60. The mutation probability (for
each bit generated in the child) was set to 0.0125. The uni-
verse consisted of 8 rings (225 individuals), and an intra-
ring cycle length of 9 was used. There doesn’t seem to be
anything magic about these particular settings, and success-
ful evolution was observed with many other settings as well.

The first experiment was to evolve a four bit odd parity
generator. Figure 7 shows the setup of the desired circuit.
The goal was to evolve a circuit consisting of 16 PIG cells
in a 4x4 grid, with four input bits, B0-B3, and one output bit,
Bout, such that the number of ones among {B0,B1,B2,B3,Bout}
was odd. The test data consisted of all possible input com-
binations of four bits, tested in binary order. The fitness
score was a simple count of the number of input combina-
tions for which the correct parity was generated. Figure 8
shows the results of this experiment. As can be seen, a per-
fect circuit was evolved after 9 generations.

The second experiment was to evolve a 4-1 multiplexer.
Figure 9 shows the setup of the desired circuit. The circuit
accepts two select bits, S1 and S0, and four general inputs
X0-X3. The circuit should select one of the inputs based on

S0 and S1, and send that input to the output. The test data
consisted of all possible input combinations of six bits (two
select inputs and four X inputs), tested in binary order. The
fitness score was a simple count of the number of input
combinations for which the correct output was generated.
Figure 10 shows the results of this experiment. In this case,
a perfect circuit was evolved in 342 generations. This is an
impressively low number of generations, considering that
the search space for this problem consists of (4 cells)x(4
cells)x(4 rows)x(2 columns) = 128 bits, or approximately
1038 possible circuit configurations, with the row constraint
enabled (without the row constraint, this number jumps to
21024 or approximately 10308).

Since most complex circuits are sequential in nature, the
RGA was used to generate a sequential circuit. The third
experiment was to evolve a three-bit counter. Since sequen-
tial circuits require memory and feedback paths, a generic
template for an 8-state sequential machine was built, as
shown in figure 11. This circuit consists of three independ-
ently clocked D-type flip flops. All flip flop outputs (q0-q2)
are sent to the left side of a blank 5x7 subcircuit, while all
inputs to the flip flops (D0-D2 and CLK0-CLK2) are read
from the bottom of that subcircuit. Additionally, the circuit
accepts a single external clock signal, CLKin. The subcircuit
is a blank combinatorial circuit, which must be evolved to
produce the correct sequential behavior of the entire circuit.

Figure 9. 4x4 template for 4-1 Multiplexer. The
circuit being evolved should select one input

from {X 0,X1,X2,X3} based on S1 and S0.

 S1 S0

Out=X

X0

X1

X2

X3
[S1S0]

Bout

 B3 B2 B1 B0

Figure 7. 4x4 parity generator template. Each square
represents a single PIG cell. The goal was to config-

ure all 16 cells so that Bout is the odd parity bit for B0-
B3.

Figure 8. Results of parity generator evolution. A
perfect odd parity generator was evolved in 17

cycles.

4-Bit Parity Generator

0

100

200
300

400

500

600

700
800

900

1000

1 3 5 7 9

Generation

F
itn

es
s

(/
10

00
)

Avg

Max

Note that this is similar to the setup of some FPGAs
[Act95], but that on the PIG, the flip flops and feedback
paths are also implemented in PIG cells, as is the 5x7 sub-
circuit to be evolved.

 The desired behavior of this circuit was to accept a sin-
gle external clock input, and produce sequential 3-bit inte-
gers on each falling edge of the external clock. The 3-bit
output value was taken from the q outputs of the flip flops,
labeled Q0-Q2 in figure 11. To evaluate the circuit, the clock
input was toggled high and then low a total of 16 times,
enough to cycle the output twice. The fitness scoring was a
little more complex for this circuit than for the first two. As
a counter, a simple NOP circuit (qi=0) would score 125,
without capturing any of the desired essence of the circuit.
Therefore the circuit was scored, following each downward
clock transition, as follows:

• If the output matches the desired output (next se-
quential number modulo 8), add 30 points to the
score

• else if the output is one more than the previous output
value (increment), add 5 points

• else if the output changes at all, add one point
• otherwise add no points for that clocking operation.

Figure 12 shows the results of this experiment. Here the
system required 1339 generations before converging on a
perfect solution. Again, with row constraints, the total
search space for the 5x7 circuit is approximately 1084 possi-
ble circuit configurations.

6 Conclusions and Future Work

A new type of genetic algorithm, the RGA, has been de-
scribed and shown to be both feasible and successful in the
evolution of both combinatorial and sequential digital cir-
cuits. The RGA is inherently parallel, leading to an O(1)
evolutionary cycle. This makes the RGA attractive for
evolving large, complex circuits which may require a large
population size. While it is not possible to implement a
fully-parallel RGA on an FPGA, a new type of self-
reconfigurable hardware device, the PIG, is well suited to
implementing an RGA.

While other all-hardware parallel GAs have been im-
plemented [Hig94, Kaj98], these generally involve custom
hardware specifically designed for implementing the GA. In
contrast, the PIG’s hardware is in no way specialized to
implementing any particular type of algorithm. It is a truly
general-purpose self-reconfigurable hardware device. Its
application to the RGA is a demonstration of its versatility
and suitability to a wide range of parallel problems
[Mac99].

Moreover, other general-purpose single chip solutions
are still, architecturally, composed of two subsystems: a
controller and a reconfigurable platform [Nag98]. On the
PIG, identical hardware is used for both of these subsys-
tems. In the RGA implementation, the devices which im-
plement the evolving members are the same as the devices
which implement the control circuits for executing the

Figure 12. Results of evolving a 3-bit counter. A
perfect circuit was evolved in under 1400 gen-

erations.

3-Bit Counter

0

200

400

600

800

1000

0 350 700 1050 1400

Generation

F
itn

es
s

(/
10

00
)

Avg

Max

Figure 10. Results of multiplexer evolution. A
perfect circuit was evolved after 342 evolutionary

cycles.

Clk

D

q

Clk

D

q

Clk

D

q

CLKin

Figure 11. Generic 8-state sequential ma-
chine, with blank 5x7 subgrid for evolving
specific behavior. CLKin is the single in-

put, Q0-Q2 are the three outputs.

Q0

Q1

Q2

4-1 Muxer

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

Generation

F
itn

es
s

(/
10

00
)

Avg

Max

RGA. This can not be achieved with, say, and FPGA, since
the inputs and outputs within the gate array can not directly
read or write the chip’s configuration registers.

Furthermore, since the evolved circuits use the same
hardware as that used to implement the RGA, these evolved
circuits potentially have the ability to create and modify
other circuits. This means the PIG can be used to study
evolvable hardware where the target circuit is itself config-
uring other circuits within the PIG.

The uniformity of the PIG’s hardware has numerous ad-
vantages, of which only a few have been exploited in the
present work. Further advantages include fault tolerance,
ease of manufacture, and adaptability to new technologies.
Hopefully, the field of evolvable hardware will find more
applications for the PIG, leading to further research on the
PIG itself, and ultimately the realization of a large-scale
PIG.

Acknowledgment

The author wishes to thank Lisa Durbeck for many valuable
discussions, ideas and suggestions during the course of this
work, as well as for her continuous support and contribu-
tions to the PIG.

References

[Act95] Actel, FPGA Data Book and Design Guide, Actel,
Sunnyvale, CA, 1995.

[Dre86] E. Drexler, Engines of Creation, Anchor
Press/Doubleday, Garden City, NY, 1986.

[Hem94] H. Hemmi, J. Mizoguchi and K. Shimohara, “De-
velopment and Evolution of Hardware Behav-
iors,” in R. Brooks and P. Maes, editors, Pro-
ceedings of Artificial Life IV, pages 371-376, MIT
Press, 1994.

[Hig94] T. Higuchi, H. Iba and B. Manderick, “Evolvable
Hardware,” in H. Kitano and J. Hendler, editors,
Massively Parallel Artificial Intelligence, pages
398-421, The AAAI Press, Menlo Park, CA,
1994.

[Kaj98] I. Kajitani et al., “A Gate-Level EHW Chip: Im-
plementing GA Operations and Reconfigurable
Hardware on a Single LSI,” in M. Sipper, D.
Mange and A. P-rez-Uribe, editors, Evolvable
Systems: From Biology to Hardware, pages 1-12,
Springer, 1998.

[Kit96] H. Kitano, “Morphogenesis for Evolvable Sys-
tems,” in E. Sanchez and M. Tomassini, editors,
Towards Evolvable Hardware: The Evolutionary
Engineering Approach, volume 1062 of Lecture
Notes in Computer Science, pages 99-117,
Springer, 1996.

[Koz92] J. Koza, Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection, MIT Press, Cambridge, MA, 1992.

[Koz98] J. Koza et al., “Evolving Computer programs us-
ing Rapidly Reconfigurable Field-Programmable
Gate Arrays and Genetic Programming,”
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 209-219,
ACM Press, New York, 1998.

[Len93] C. Lent, P. Tougaw and W. Porod, “Bistable Satu-
ration in Coupled Quantum Dots for Quantum
Cellular Automata,” Applied Physics Letters 62,
pg. 714, Feb 1993.

[Lip96] R. Lipton and E. Baum, editors, DNA Based
Computers, American Mathematical Society,
1996.

[Mac99] N. Macias., “The PIG Paradigm: The Design and
Use of a Massively Parallel Fine Grained Self-
Reconfigurable Infinitely Scalable Architecture,”
Proceedings of The First NASA/DOD Workshop
on Evolvable Hardware (EH’99), 1999.

[Nag98] K. Nagami, K. Oguri, T. Shiozawa, H. Ito and R.
Konish, “Plastic-Cell Architecture,” in K. Pocek
and J. Arnold, editors, IEEE Symposium on
FPGAs for Custom Computing Machines, IEEE
Society, Los Alamitos, CA, 1998.

[Sip97] M. Sipper., Evolution of Parallel Cellular Ma-
chines, volume 1194 of Lecture Notes in Com-
puter Science, pages 119-127, Springer, 1997.

[Tom96] M. Tomassini, “Evolutionary Algorithms,” in E.
Sanchez and M. Tomassini, editors, Towards
Evolvable Hardware: The Evolutionary Engi-
neering Approach, volume 1062 of Lecture Notes
in Computer Science, pages 19-47, Springer,
1996.

