
Self-Assembling Circuits with Autonomous Fault Handling

Nicholas J. Macias
Cell Matrix Corporation

1004 Palmer Drive
Blacksburg, VA 24060

(877) 473-0882
nmacias@cellmatrix.com

Lisa J. K. Durbeck
Cell Matrix Corporation

1004 Palmer Drive
Blacksburg, VA 24060

(877) 473-0882
ld@cellmatrix.com

Abstract

This paper reports on the results of our recent NASA
SBIR contract, “Autonomous Self-Repairing
Circuits,” in which we developed a novel approach
to fault-tolerant circuit synthesis utilizing a self-
configurable hardware platform. The approach was
based on the use of atomic components called
Supercells. These Supercells perform several
functions in the building of a desired target circuit:
fault detection, fault isolation, configuration of new
Supercells, determination of inter-cell wiring paths,
and implementation of the final target circuit. By
placing these tasks under the control of the
Supercells themselves, the resulting system requires
minimal external intervention. In particular, for a
given target circuit, a fixed configuration string can
be used to configure the system, regardless of the
location of faults in the underlying hardware. This is
because the configuration string does not directly
implement the final circuit. Rather, it implements a
self-organizing system, and that system then
dynamically implements the desired target circuit.

1. Introduction

 Fault tolerance is an important goal for modern
digital circuits, particularly those applied to critical,
remote situations, such as satellite control. Various
methods have been used to improve the ability of
systems to operate in the presence of faults. One
classic approach is to use redundancy, where multiple
copies of critical system components are available,
allowing failed components to be replaced in the
event of failure. In [1], Miller takes a different
approach to creating fault tolerant circuits, by
evolving digital circuits from components with built-

in stochastic behavior. These evolved circuits then
behave more predictably in the presence of noise.
 The present research is focused on developing a
methodology for implementing fault tolerant circuits
on top of a general purpose reconfigurable platform.
Rather than taking the approach of directly replacing
a component once it fails, the present work focuses
on the design of a circuit that, once informed that a
failure has occurred, can successfully rebuild a
working version of itself with minimal external
intervention. Such circuits may be called self-
repairing or self-assembling circuits.
 This approach to fault tolerance offers advantages
over other approaches such as redundancy. In
redundancy-based fault tolerance, there is a small
number of copies of each system component, so that
when a component fails, a replacement can take its
place. Such a system is limited by the number of
copies it has of each system component, which limits
the number of times any given component can fail.
FPGA-based redundancy schemes such as [2] use
reconfigurability to effectively increase the number
of replacement copies available.
 In a self-assembling strategy, the system does not
have a fixed number of copies of each system
component. Instead, any component can be rebuilt
from a large pool of identical, fine-grained building
blocks, which are shared by all components of the
system. Therefore, the ability of the system to self-
assemble in the presence of faults is primarily a
function of the amount of remaining undamaged
hardware, rather than the physical location of the
faults.
 Another advantage of self-assembly lies in the
pattern of faults that can be tolerated. Because failed
components are rebuilt from a distributed set of small
building blocks, the system can usually still recover
from a failure event even if the system’s hardware
has been damaged in a large number of locations.
This type of self-organizing system is similar in spirit

to some of the embryological approaches taken by[4],
[3] and [5]. Unlike the present work, which recovers
from faults by performing a full system rebuild, these
embryological approaches are able to recover from
faults while continuing to operate. However, the
present work may be more resilient than the row- or
column- replacement strategy of, say, [4], which can
not recover from a pattern of faults that affects every
row or column.
 Self-assembly with autonomous fault handling
refers to the ability of the system to perform its own
fault analysis and repair operations. In contrast to
systems that rely on external analysis and control,
autonomous systems are extremely robust, because
there is no additional vulnerability of an external
control system.
 The goals of this research are thus as follows:
• to develop a methodology for implementing a

desired circuit on a general purpose
reconfigurable platform;

• to endow these circuits with the ability to self-
assemble, that is, to rebuild themselves in the
event of a failure, such that full function is
restored; and

• to create a system that operates with minimal
external intervention.

2. Approach

 To implement a particular target circuit,
reconfigurable devices require some type of
configuration information, which describes how their
internal elements should be configured. However, if
this configuration information rigidly maps particular
device elements to particular pieces of the target
circuit, then the configuration will fail if those device
elements have been damaged. Therefore, in order to
implement a self-assembling circuit, one must avoid
overly explicit configuration information. This can be
achieved by describing the target circuit more
abstractly, in terms of circuit building blocks (such as
gates) and connections among those blocks. This
abstract description is then used as a guide to
configure the device, in order to implement the target
circuit.
 More specifically, the strategy for creating self-
assembling circuits comprises the following steps:
1. create an abstract description of the target circuit,

without reference to particular elements within
the reconfigurable device;

2. analyze the reconfigurable device’s hardware,
noting the locations of faulty areas; and

3. configure the device to implement the target
circuit, based on the abstract circuit description,

while avoiding the faulty device regions
identified in step 2.

 Step 1 only needs to be performed once per target
circuit, and is similar to compilation of code or pre-
processing of VHDL. Steps 2 and 3 must, however,
be performed each time the device is to be
configured, since the location of faults may change
over time (for example, in a high radiation
environment, more faults may accrue over the
lifetime of the device). But if an external system is
used to analyze or configure the reconfigurable
device, then that external system represents an
additional fault vulnerability. This is why one design
goal is to minimize external intervention in steps 2
and 3.
 One way to achieve this goal is to create circuitry
on the reconfigurable device itself which performs
steps 2 and 3. Such circuitry is called the control
circuit. Note, however, that it is not sufficient to
merely move the control circuit inside the
reconfigurable device. To achieve true fault
tolerance, the control circuit must itself be fault
tolerant. But since the control circuit is responsible
for creating fault-tolerant circuits, we appear to have
a set of circular, self-referential requirements, i.e., a
fault tolerant control circuit is necessary in order to
implement a fault tolerant control circuit.
 Typical reconfigurable devices (e.g. FPGAs) are
externally controlled, and thus this type of self-
referential behavior is difficult to achieve. However,
by using a novel self-configurable device, called the
Cell Matrix™, this self-referential system can be
easily implemented.

3. Cell Matrix Background

 The hardware substrate used for this work is the
Cell Matrix [6,7]. The Cell Matrix is a fine-grained
reconfigurable device, consisting of a homogeneous
collection of cells, interconnected in a nearest-
neighbor scheme. Cells perform the basic data
processing functions of the system, by continuously
mapping inputs to outputs. Each cell contains a small
memory called a lookup table, whose contents
specify the behavior (input-to-output mapping) of the
cell. Cells exchange inputs and outputs with a fixed
set of adjacent neighboring cells. By properly
configuring cells, they can be made to cooperatively
implement higher-order functions.
 Unlike traditional reconfigurable devices that are
controlled by external systems, the Cell Matrix is
self-configurable. This means that the cells within the
Cell Matrix are themselves capable of analyzing and
reconfiguring other cells within the matrix. To
accomplish this self-configurability, each cell

operates independently in one of two modes: D mode
or C mode. In D mode, incoming data is processed by
the cell’s lookup table, and used to generate outputs
to the cell’s neighbors. In C mode, incoming data is
used to re-write the cell’s lookup table. D mode is
thus the normal “data processing” mode of a cell,
while C mode is the configuration mode of a cell.
 A cell’s current mode is determined not by itself,
but by its neighbors. Therefore, one cell can modify a
neighboring cell’s lookup table simply by placing
that neighbor in C mode, and then writing to its own
output lines to that neighbor. Similarly, a cell may
read a neighboring cell’s lookup table by placing that
neighbor in C mode, and then reading its own input
lines from that neighbor.
 Finally, it is a cell’s own lookup table that governs
its ability to control a neighboring cell’s mode.
Therefore, one cell X may configure a neighboring
cell Y, in such a way that Y will subsequently
configure a third cell Z. In such a sequence, Y
exhibits dual modes of operation: first as the target of
a configuration operation, and then as the initiator of
a configuration operation. The capability of cells to
switch between these dual modes is one key to
implementing the self-referential system described at
the end of the previous section. Further background
on the Cell Matrix architecture can be found at [8,9].

4. Supercell Overview

 In the Supercell approach to self-assembling
circuits, a small region of the Cell Matrix is first used
to implement an initial building block, called a
Supercell. Supposing that this single Supercell can be
implemented without faults, it then performs a series
of tests on nearby regions of the Cell Matrix, looking
for defective areas. In regions that are found to be
defect free, the initial Supercell then configures
additional Supercells. Note that, because Supercells

in this second generation are placed only on defect-
free regions of the Cell Matrix, and because this is
controlled by the original defect-free Supercell, these
new Supercells can also be assumed to operate
perfectly.
 The second generation Supercells then repeat this
process, first analyzing nearby regions for faults, and
then implementing a third generation of Supercells in
the nearby defect-free regions. This process continues
for a fixed number of generations. The following
should be noted about this strategy:

• The initial Supercell need not be located in a
corner of the Cell Matrix; it can be located at any
accessible point.

• All of the Supercells implemented are identical
to each other.

• Assuming the initial Supercell works properly,
and no new defects occur in the hardware, all
subsequently configured Supercells can also be
assumed to work properly.

• It is the Supercells themselves that are
responsible for testing regions and creating new
Supercells.

• Multiple regions of the matrix will be tested and
configured in parallel, as shown in Figure 1.

• As the number of Supercells grows, so grows the
degree of parallelism in each step. Thus there is
actually an acceleration in the test/configuration
rate of the system. On a two-dimensional Cell
Matrix, approximately n^2 Supercells will have
been created after 4n steps (new Supercells are
first configured to the North, then the West, then
the South and finally the East. Thus it takes 4
“steps” to extend the collection of Supercells on
all 4 sides). Figures 2a-2i illustrate this O(n^2)
growth.

• At all stages of this process, the set of Supercells
is guaranteed to be connected, since Supercells

are only configured adjacent to pre-existing
Supercells.

• The net effect of this process is to tile the defect-
free regions of the Cell Matrix with a regular
collection of Supercells, while leaving
unconfigured any regions containing defects.

 Once the Cell Matrix has been tiled with a
collection of Supercells, it is this collection of
Supercells that performs the task of converting the
abstract target circuit description into a working
circuit. However, rather than configuring additional
regions of the Cell Matrix to implement the target
circuit, the Supercells themselves are used as
building blocks in the creation of the target circuit.

Because the Supercell collection has been generated
so as to occupy only defect-free regions of the
hardware, the resulting target circuit will also be
defect-free, as long there are no new defects. In the
event that new defects appear, the entire process of
Supercell analysis and synthesis, followed by
creation of the target circuit, can simply be repeated.
 In order for the Supercells to implement the target
circuit, the following steps must be performed:
• particular Supercells must be assigned to

particular elements in the target circuit’s abstract
description;

• each Supercell must implement the element (i.e.,
gate) to which it has been assigned;

• each Supercell must determine which other
Supercells it needs to exchange data with, based
on the abstract target circuit description;

• each Supercell must locate those other Supercells
with which it will exchange data; and

• each Supercell must synthesize the necessary
pathways for exchanging data with other
Supercells.

 Supercell behavior can thus be broken down into
two basic functions: tiling of the Cell Matrix with
Supercells (which includes detection and avoidance
of faults), and creation of the desired target circuit
from those Supercells. The next two sections discuss
the technical details of how Supercells perform these
functions.

5. Supercell Details: Tiling of the Matrix

 As with all circuits implemented on a Cell Matrix,
a Supercell is composed of a collection of Cell
Matrix cells, that have been configured in a particular
way. Associated with a Supercell is a collection of
bitstreams called a Short Configuration
Sequence(SCS), whose primary function is to
configure a region of the Cell Matrix to act as a
Supercell. The SCS is supplied externally, but for a
given target circuit, the SCS never changes.
Therefore, the SCS may be supplied by an external
memory such as an EPROM. Upon receiving the
SCS, a Supercell performs three functions:

1. testing of unconfigured regions for faults;
2. configuration of non-faulty, unconfigured

regions, to create new Supercells; and
3. transmission of the SCS to other Supercells.

 The first step of the tiling process is testing of an
unconfigured region, called the Region Under Test
(RUT). The RUT is a region adjacent to the Supercell
performing the tests, and is the same size as a
Supercell. The SCS contains instructions that tell a
Supercell how to build pathways throughout the
RUT. These pathways give the Supercell access to
each side of every individual cell within the RUT.
The SCS also contains test patterns to be sent to each
individual Cell Under Test (CUT), as well as the
expected return pattern from the CUT. So, for
example, the SCS may configure a cell as a simple
feedback circuit, whose output is expected to be the
same as its input. By sending a test pattern of
01010101… and looking for an expected return of
01010101… the Supercell would detect any stuck-at
faults in the CUT’s input or output. A second test
pattern of 11111111… would check for stuck-at-0

faults inside the CUT’s lookup table; likewise for a
test pattern of all zeros. As a third test, the SCS may
configure the CUT as an inverter. Sending a test
pattern of 01010101… and comparing the output to
an expected return of 10101010… would check for
shorted memory bits inside the CUT’s lookup table.
In similar fashion, different tests may be applied to
the CUT.
 A Supercell contains a small comparison circuit,
that compares the CUT’s output to the expected
output. This comparison is done only at certain
quiescent times during the test cycle, to avoid false
failures due to glitches or timing delays.
 A Supercell also contains a circuit called a
guardwall. This circuit runs the full length of each of
the Supercell’s own edges. Under normal
circumstances, the guardwall acts simply as a bank of
wires, which transmits data bi-directionally from one
side of itself to the other. In this mode, the guardwall
is effectively transparent. If, however, the Supercell
detects a failure inside a RUT, it can activate the
guardwall on the side adjacent to the RUT. Once
activated, a guardwall blocks all data transmission
from one side of itself to the other, thus preventing
faulty cells within the RUT from sending bad data to
the Supercell.
 More importantly, once activated, a guardwall
can not be reconfigured, that is, the cells from
which it is composed can not be reconfigured until a
system-wide reset is performed. This is an important
feature in light of the Cell Matrix’s ability to self-
configure. Without it, a faulty cell inside the RUT
could not only transmit bad data to the Supercell, but
could actually reconfigure the Supercell’s constituent
cells. An activated guardwall prevents such
reconfiguration information from affecting the
Supercell.
 Note that guardwalls are part of the non-faulty
Supercell, not the RUT. Since Supercells are only
placed in fault-free regions, the Supercell can be
assumed to be functioning perfectly (barring the
appearance of new faults), and thus it is safe to
assume the Supercell’s guardwalls are also
functioning perfectly.
 Note also that under this strategy, a single fault
will cause an entire Supercell-sized region to be
discarded as faulty. This behavior could be avoided
by allowing slightly irregular tilings with shifted
Supercells, combined with variable locations for
inter-Supercell communication channels. However, it
is not clear the benefit would be worth the added
complexity.
 Following testing of all cells within the RUT, the
SCS contains commands that instruct each Supercell
to create a new Supercell in adjacent, non-faulty
regions. These commands are the usual bootstrap

configuration commands that are used to configure
any circuit in the Cell Matrix. Note that if a
guardwall has been activated, the commands will not
penetrate the guardwall, and thus no configuration
will occur in a faulty RUT.
 Note also that if the SCS is sent to a set of inputs
along an edge of an empty (unconfigured) Cell
Matrix, the result will be the configuration of a single
Supercell along that edge. Thus, the system can be
bootstrapped by simply sending the SCS into an
initially empty Cell Matrix.
 When a Supercell receives an SCS, it must
respond differently depending on the presence or
absence of an adjacent Supercell. As just described, if
an adjacent region is empty, a new Supercell will be
configured there. If, however, an adjacent region
already contains a Supercell, then the SCS will be
transmitted as simple data to that adjacent Supercell,
which will subsequently either configure a new
Supercell, or pass on the SCS the yet another
Supercell.

 In this fashion, the collection of Supercells forms
a cooperative broadcast network for transmitting an
incoming SCS to the perimeter of the collection.
Each time the SCS is broadcast, the collection of
Supercells grows, as shown in Figures 2a-2i.
Therefore, a tiling of the Cell Matrix with Supercells
can be achieved simply by repeatedly sending the
SCS into the inputs along an edge of the Cell Matrix.
This can be done by adding a counter to the external
memory to cause repeated transmission of the SCS,
or more simply by storing multiple copies of the SCS
inside the external memory.
 Note that the resulting tiling may include holes,
where regions containing defective cells have been
avoided. However, the entire connected set of defect-
free regions which contains the initial Supercell will
eventually be fully tiled with Supercells, if the SCS is
sent enough times. Thus, complex tilings are
possible, including concave ones, as shown in
Figures 3a-3c.

6. Configuration of the Target Circuit

 Once the Cell Matrix has been tiled with
Supercells, a GO signal is delivered to the initial
Supercell to initiate synthesis of the final target
circuit. This GO signal is transmitted to all Supercells
using the same broadcast mechanism used for SCS
transmission. Inside each Supercell is a state machine
that begins operation in response to this GO signal.
 To implement the target circuit, two things must
be done: first, individual Supercells must be assigned
the role of each of the components (gates) of the
target circuit (this step is called node assignment);
and second, connections must be created among

those components, based on the topology of the target
circuit (this step is called node wiring or path
synthesis).
 Recall that in the Supercell approach to self-
assembly, the target circuit is not described explicitly,
but abstractly as a collection of nodes and
connections. This description is referred to as the
genome of the target circuit. It is a topological
representation of the target circuit, independent of
where particular nodes may be physically placed in
the final configuration. Both node assignment and
node wiring are accomplished by the collective action
of each Supercell’s internal state machine. The
behavior of these state machines is governed closely
by the target circuit’s genome. Figure 4 shows a

sample circuit and the corresponding genome for that
circuit.
 Components within the genome are represented by
integers. To perform node assignment, each Supercell
must first be assigned a unique integer ID. These IDs
will then be used to choose a component from the
genome, and the Supercell will then assign itself to
act as that component. Note that this requires that the
IDs assigned to each Supercell be sequential, so that
any ID contained in the genome will correspond to
some Supercell. ID assignment occurs in two steps.
First, each Supercell self-assigns itself a positional
ID, based on its location within an imaginary grid of
Supercells (imaginary because some of these
Supercells may not exist, due to the presence of faults
regions. This ID assignment is similar to the
approach used in [10]. Note, however, that in the
present work, every Supercell transmits both row and
column information to every adjacent Supercell.
Therefore, a Supercell which is otherwise isolated on
a row can still receive column information from an
adjacent row (instead of receiving it from a Supercell
on the same row). Additionally, the present work
does not rely on failed Supercells for any part of the
ID assignment process. Only non-faulty Supercells
participate in the ID assignment. This means, for
example, that a failed Supercell does not need to
transmit ID information to its neighbors.
 This approach to ID assignment is an easy
operation to perform. Each Supercell simply consults
a neighbor to learn that neighbor’s row and column,
and then adjusts for its own position relative to that
neighbor. The initial Supercell (the first one
configured) is marked with a flag when it is
configured, indicating that it has a particular row and
column position. All other positions are thus
calculated relative to the initial Supercell.
 While this positional ID is straightforward to
compute, it is not directly usable for node
assignment, since the assigned IDs depend rigidly on
the position of the Supercell in the tiling of the Cell
Matrix. Since that tiling may contain holes, it is
impossible to guarantee that any particular positional

ID will correspond to an existing Supercell.
Therefore, there can be no direct correspondence
between these positional IDs and the IDs stored in the
genome.
 However, positional IDs are still very useful, in
that they assign an ordering to the Supercells. This
ordering can be given, for example, by the formula
ID = row + (2^32)*column. Using this ordering, the
Supercells can then self-assign sequential integer
IDs to themselves, by simply assigning consecutive
integers to Supercells in the order given by their
positional IDs. This self-assignment is performed by
the collective action of the Supercells’ state
machines. In this way, the collection of Supercells
are given sequential IDs, that can then be used to
choose components from the target circuit’s genome.
At this point, the set of Supercells is mapped to a set
of sequential integers, with no holes in the mapping.
 Following assignment of sequential IDs to each
Supercell, the Supercells begin the process of node
wiring. The goal of this step is to create
communication pathways among the components of
the final target circuit. Node wiring is accomplished
one Supercell at a time, in the order given by their
sequential IDs. At each stage, the Supercell that is
currently performing the node wiring is called the
Master Supercell. Node wiring involves the following
steps:
1. The Master Supercell creates a broadcast

network among the Supercells. This is actually
the same type of network that the initial
Supercell built to broadcast the SCS to all other
Supercells during the tiling phase.

2. The Master Supercell consults the genome, and
determines which component it will implement
in the final target circuit.

3. The Master Supercell determines the sequential
ID of the Supercell (called the Source Supercell)
that generates the first input to that component.

4. The Master Supercell broadcasts a request (using
the network built in Step 1) for the Source
Supercell’s ID.

The Source Supercell will respond to that
request, transmitting an acknowledgement back
to the Master Supercell (again using the network
built in Step 1).

5. As the acknowledgement signal is transmitted
back to the Master Supercell, routing
information is appended to it by the intervening
Supercells involved in the transmission.

6. When the Master Supercell receives the
acknowledgement, it decodes the appended
routing information, thereby determining a path
to the Source Supercell

7. The Master Supercell then generates a series of
low-level cell configuration commands, that
change the configuration of certain cells (in a
region called the Steering Block) within the
Supercells between the Master and Source. The
result of this step is the creation of a
communication channel from the Source to the
Master. Note that this channel only uses cells
within the intervening Supercells.

 Steps 3-8 are repeated for each required input.
Note that this routing algorithm is similar to a greedy
algorithm, in that as soon as a path is found, it is
used, without regard for future wiring requirements.
This may cause the algorithm to fail to route a
complete circuit, merely because of the ordering of
the elements in the genome. Strategies such as [11],
which have similar goals of autonomous routing,
allow pieces of paths to be shared among multiple
paths, which may relieve some routing congestion.
 Following synthesis of all communication
channels, the Master Supercell then performs a

differentiation step. In this step, a small subcircuit
(called the functional block) within the Supercell is
configured to act as the designated component in the
final target circuit. Following differentiation, the
Master Supercell rescinds control, and the Supercell
with the next sequential ID assumes the role of the
Master. This process continues, until all wiring
indicated by the genome has been achieved. At the
conclusion of this process, a DONE signal is
generated, indicating that the target circuit has been
implemented and is ready for normal operation.

7. Results and Discussion

 A prototype Supercell was successfully designed
and implemented on the Cell Matrix. Figure 5 shows
an annotated picture of this Supercell, taken from the
Cell Matrix simulator. This Supercell has the
following characteristics:

• The Supercell is composed of 72,900 Cell Matrix
cells, in a 270x270 configuration.

• The final target circuit may contain up to 256
Supercells.

• Each Supercell implements a single two-input,
one-output functional block.

• Each such functional block is comprised of three
Cell Matrix cells, chosen from a library of 20
basic single-cell blocks.

• Two of these three cells may be chosen to
receive input from either another Supercell’s
output, or from an external port.

• The third cell generates the Supercell’s output,
and is available as an input to other Supercells.

• For purposes of routing a Supercell’s output to
an input, each intervening Supercell contains
three independent paths through its steering
block. The steering block is a subset of the
Supercell, available for building circuits to route
data from one side of a Supercell to another side.
Having three independent paths allows greater
flexibility in routing than having a single path.

 Note that none of the above specifications
represent hard limits of the technique itself. Rather,
the above limits (e.g. 256 Supercells, 20 single-cell
blocks, etc.) were chosen for this particular
implementation, based on the expected size and
nature of the test problems in the current work.
 Software tools were also developed, for taking a
circuit’s genome and creating the necessary Supercell
configuration strings to implement that circuit. The
design flow is thus fully automated, from genomic
circuit description to final strings. Furthermore, the
conversion form a HDL description of a circuit to a

genome is easily automated, though this was not done
in the present work.
 This Supercell was thoroughly simulated with a
cell-level Cell Matrix simulator, and its behavior was
verified to be correct. The ability of the system to
detect and isolate faults was tested, by allowing the
simulator to treat certain cells as faulty. In all cases,
Supercells were able to successfully detect simulated
faults in adjacent regions, and guardwalls were
successfully activated. These fault detection
sequences have also been verified on physical (non-
simulated) hardware.
 Next, specific target circuits were chosen, and the
ability of the system to self-configure under different
fault conditions was tested. Test circuits ranged from
simple combinatorial logic circuits to more complex
sequential circuits, including a counter and a Linear
Feedback Shift Register (LFSR).
 In each test, a fixed genome was constructed for
the target circuit. This genome was inserted into the
fixed Supercell design, resulting in a fixed SCS. A set
of cells on the Cell Matrix were then chosen to be
faulty, and the ability of the system to properly self-
configure into the test circuit was checked by
supplying the SCS to a set of edge cells. Successful
operation of the system was verified under a variety
of fault conditions, including isolated failures, large
sets of localized failures, concave failure regions, and
distributed failures where every Supercell row and
column contained a fault. Finally, the configured
target circuits were themselves simulated, and shown
to function perfectly.
 While a Supercell is clearly a large, complex
circuit, it ultimately performs a relatively simple
function in the final target circuit. As such, it is
perhaps more appropriately though of as a type of
smart transistor. It can be used as a small-scale
building block in a larger circuit, but it is much more
powerful than a transistor switch or a simple gate. A
Supercell represents a flexible, resilient, and, in some
sense, self-aware building block. It is a block that can
actively participate in the creation of a larger circuit,
despite physical damage to the underlying substrate.
 While the size and complexity of a Supercell may
make it impractical for use with today’s silicon
technology, it could play an important role in future
atomic-scale technologies, where the cost difference
between 72,900 cells and one cell becomes
negligible. Supposing that a single Cell Matrix cell
contains 1,000 switches, a Supercell would require
approximately 73 million switches. While this seems
a huge number, consider a fabrication paradigm
where a single switch can be created from 1,000
carbon atoms (e.g. Drexler’s Rod Logic [12]). In this
paradigm, a Supercell would contain 73 billion
carbon atoms. Given the fact that 12 grams of carbon

contains 6.022x 1023 atoms, this means a cube of
carbon 1.7 cm on each side could contain over 8
trillion supercells, and thus could implement circuits
containing 100,000 times more switches than today’s
largest ICs.
 On the other hand, it is not necessarily the case
that today’s ICs (including standard FPGAs) could
necessarily scale up to trillion of switches, because of
the inevitable presence of faults one would expect in
such a large system. The architectural fault isolation
of the Cell Matrix itself, coupled with the dynamic
fault handling capabilities of Supercells, are both key
to implementing working circuits in the presence of
such faults.

8. Conclusions

 The Supercell approach to self-assembling circuits
appears to be a viable technique for implementing
circuits in a fault-tolerant fashion with minimal
external intervention. The system achieves a working
version of a desired target circuit by first tiling the
Cell Matrix substrate with a set of Supercells, and
then implementing the target circuit using those
Supercells. Faulty regions can be avoided at the
granularity of a single Supercell, as opposed to entire
row or column replacement. Complex tilings of
Supercells are also feasible, thereby maximizing the
usage of non-faulty hardware.
 The present work utilizes the standard Cell Matrix
architecture, without any modifications or additions
to the architecture. This work uses the self-
configurability of the Cell Matrix in a number of
ways, including:
• development of test circuits for analysis of a

region prior to Supercell synthesis;
• synthesis of new Supercells;
• synthesis of functional blocks within a Supercell

to implement a component of the final target
circuit; and

• synthesis of communication pathways among
Supercells.

 The fault tolerance of the system is based on the
ability of the system to rebuild itself, by sending a
fixed configuration string to an empty Cell Matrix.
While, for a given target circuit, the configuration
string remains the same, the resulting circuit
implementation on the Cell Matrix will vary from run
to run, depending on the location of faults in the
hardware. Hence, external interaction is minimized,
consisting only of transmission of a fixed bitstream to
the Cell Matrix.
 Finally, the ability of Supercells to autonomously
self-configure without external intervention, despite

the presence of hardware defects, may make the
Supercell technique extremely useful for
implementing digital circuits in future atomic-scale
technologies, where the densities involved make
manufacturing errors inevitable, and the scales
involved make manual intervention impractical.

9. Future Work

 The Supercells designed in this work were
implemented on a two dimensional Cell Matrix.
However, future nanotechnologies may be best suited
to fabrication of three dimensional circuits.
Therefore, it would be interesting to re-implement the
Supercell on a three dimensional Cell Matrix. While
the basic design would remain the same, the resulting
circuit would likely be smaller. Additionally, by
embedding the Supercells in three-dimensional space,
the task of autonomous routing is simplified, thereby
potentially leading to better fault handling.
 Another interesting variation would be to
eliminate the need for an externally-supplied
configuration sequence. Instead, the Supercells could
be given the ability to autonomously generate
configuration sequences by themselves. This would
require merging the Supercell design with previously
completed work on self-replicating circuits. The
resulting system would be extremely robust, since, in
the event of severe damage, a single surviving
Supercell would be sufficient to rebuild the entire
target circuit.
 Finally, adding the ability to Supercells to detect
system failures would further increase the ability of
the system to operate autonomously.

Acknowledgments

 This work was funded in part by NASA SBIR
Contract NAS2-01049. The authors gratefully
acknowledge the support of NASA and Ames
Research Center in this work. The authors also
acknowledge the helpful comments of the reviewers.

References

[1] J. Miller, M. Hartmann, “Evolving Messy Gates
for Fault-Tolerance: Some Preliminary Findings,”
Proceedings of 3rd NASA/DoD Workshop on
Evolvable Hardware, D. Keymeulen, J. Lohn, A.
Stoica and R. S. Zebulum, eds., July 2001.
[2] J. Lach, W. Mangione-Smith and M. Potkonjak,
“Low Overhead Fault-Tolerant FPGA Systems,”
IEEE Transactions on VLSI Systems, Vol. 6, No. 2,
pp. 212-221, 1998.
[3] A. Stauffer, D. Mange, G. Tempesti, C. Teuscher,

“BioWatch: A Giant Electronic Bio-Inspired Watch,”
Proceedings of 3rd NASA/DoD Workshop on
Evolvable Hardware, D. Keymeulen, J. Lohn, A.
Stoica and R. S. Zebulum, eds., pgs. 185-192, July
2001.
 [4] A. H. Jackson and A. M. Tyrell, “Asynchronous
Embryonics,” Proceedings of 3rd NASA/DoD
Workshop on Evolvable Hardware, D. Keymeulen, J.
Lohn, A. Stoica and R. S. Zebulum, eds., pgs. 201-
210, July 2001.
[5] D. Mange, M. Sipper, A. Stauffer, G. Tempesti
(invited paper), “Toward Self-Repairing and Self-
Replicating Hardware: The Embryonics
Approach,” Proceedings of 2nd NASA/DoD Workshop
on Evolvable Hardware, pgs. 205-214, IEEE
Computer Society, Los Alamitos, 2000.
[6] N. Macias, “The PIG Paradigm: The Design and
Use of a Massively Parallel Fine Grained Self-
Reconfigurable Infinitely Scalable Architecture,”
Proceedings of The First NASA/DOD Workshop on
Evolvable Hardware (EH’99), D. Keymeulen, J.
Lohn and A. Stoica, eds., pgs. 175-180, July 1999.
[7] L. Durbeck and N. Macias, “The Cell Matrix: An
Architecture for Nanocomputing,” Nanotechnology
12, pgs. 217-230, Institute of Physics Publishing Ltd.,
2001.
[8] US Patents #5,886,537; #6,222,381; and
#6,297,667.
[9] Cell Matrix Corporation Website,
http://www.cellmatrix.com
[10] A.H. Jackson, A.M. Tyrrell, “Asynchronous
Embryonics with Reconfiguration,” Proceedings of
4th International Conference on Evolvable Systems,
pgs. 88-99, Tokyo, Japan, October 2001
[11] J.M. Moreno, E. Sanchez, J. Cabestany, "An In-
System Routing Strategy for Evolvable Hardware
Programmable Platforms", Proceedings of 3rd

NASA/DoD Workshop on Evolvable Hardware, D.
Keymeulen, J. Lohn, A. Stoica and R. S. Zebulum,
eds., pgs. 157-166, July 2001.

 [12] E. Drexler, “Engines of Creation,” Anchor
Press/ Doubleday, Garden City, NY, 1986.

