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ABSTRACT

Automated Placement and Routing of Cell Matrix Circuits

by

Dimitri Yatsenko, Master of Science

Utah State University, 2003

Major Professor: Dr. Donald Cooley
Department: Computer Science

Cell Matrix is a parallel self-configurable architecture. It is similar to field programmable

gate arrays (FPGAs) in that Cell Matrix elements can be programmed. Cell Matrix circuits differ

from FPGAs because groups of their elements can dynamically reprogram adjacent elements.

Advanced behaviors arise from this ability, setting Cell Matrix apart from architectures lacking

self-configurability. 

This thesis specifies the first Cell Matrix compiler to automatically generate Cell Matrix

circuits from logic specifications. Given a schematic design, a set of available cells, and an optional

seed placement, the Cell Matrix compiler generates a complete and efficient code to load into Cell

Matrix cells.

The placement algorithm combines self-organizing maps and force-directed optimization.

An efficient gate placement emerges from the collective action of individual gates following simple

parameterized rules. The wire routing uses an A* shortest-path algorithm. The overall approach is

shown to be highly parallelizable, flexible, and versatile.

(45 pages)
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INTRODUCTION

What is a Cell Matrix?

Cell Matrix [Durbeck, L. and Macias, N. The Cell Matrix: An architecture for

nanocomputing. Nanotechnology, 12 (2000), 217-230., Durbeck, L. and Macias, N. Defect-

tolerant, fine-grained parallel testing of a Cell Matrix. SPIE ITCom, Series 4867 (2002), 71-85. Ed

Schewel, J., James-Roxby, P., Schmit, H., and McHenry, Macias, N. The PIG paradigm: The

design and use of a massively parallel fine grained self-reconfigurable infinitely scalable

architecture. In Proceedings of The First NASA/DOD Workshop on Evolvable Hardware, (1999),

175-80. Ed Stoica, A., Keymeulen D., Lohn J. ] is a massively parallel self-configurable

architecture developed by Cell Matrix Corporation. Its elements can be configured to perform logic

operations, just as field-programmable gate arrays (FPGA) can be. Unlike FPGAs, Cell Matrix

lacks the conventional control superstructure. Instead, Cell Matrix elements are capable of

dynamically programming neighboring elements. These innovative properties of Cell Matrix permit

advanced hardware-level behaviors such as fault tolerance, evolvable functionality, and dynamic

configurability between “computation in time” and “computation in space” [Durbeck, L. and

Macias, N. The Cell Matrix: An architecture for nanocomputing. Nanotechnology, 12 (2000), 217-

230.].

Problem Statement 

Until now, the placement and routing of Cell Matrix circuits have been essentially

handcrafted.

This thesis introduces the first Cell Matrix compiler. The compiler translates conventional

schematic designs into Cell Matrix code that can then be programmed into a Cell Matrix using

existing utilities. The core steps of the compilation process are placement and routing. The
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placement and routing problem is stated as follows: Given (a) a schematic design, (b) a set of

available cells, and (c) an optional seed placement, the Cell Matrix compiler generates a complete

and efficient Cell Matrix layout. The seed placement is introduced, primarily, to enable the

designer to specify the locations of terminal wires in order to connect the circuit to other circuits or

partitions.

The Cell Matrix Compiler effectively circumvents defective regions. The algorithm is

extendable to other topologies, including three-dimensional ones. No attempt is made to implement

the algorithm using the Cell Matrix itself. The algorithm is made highly parallelizable by keeping

all information and operations localized.

Outline of Contribution

1. This thesis specifies a placement and routing algorithm for an innovative hardware

platform previously lacking an automatic routing tool.

2. An original placement and routing algorithm is employed based on self-organizing maps.

3. A scheme is developed to blend placement and routing to efficiently utilize the Cell Matrix

architecture’s non-differentiated logic and routing resources.

4. The algorithm is developed in such a way that the distinct stages of the placement and

routing process are performed by fundamentally identical iterations of the algorithm, with

only its parameters changing from phase to phase.

5. An A* wire routing algorithm is demonstrated to increase the efficiency and optimality of

the conventional maze solving algorithms cited in literature on circuit routing.

Present Procedure for Placement and Routing Process of Cell Matrix Circuits

Presently, Cell Matrix circuits are programmed by explicit specification of each cell’s function.

The circuit designer executes the steps outlined in Table 1. The objective of this thesis is to fully

automate steps 4-8.
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Table 1. Current Cell Matrix design steps.

1. Produce a schematic design to be implemented (manually or using schematic
entry tools).

2. If necessary, partition the netlist into smaller parts to be implemented
separately.

3. Allocate a Cell Matrix area for each netlist partition and define connections
between the partitions.

4. Assign placement to logical elements within each Cell Matrix area.

5. Route wires connecting logical elements according to the netlist.

6. If some wires cannot be routed, make adjustments to the results of steps 4 and
5.

7. Specify the truth tables of each cell according to logical elements and wires
residing in them.

8. Configure Cell Matrix hardware using the cell specifications from step 7.
(Done by Cell matrix Corporation tools).

Target Topology

To limit the scope of the project, I will focus on a single baseline topology, the two-

dimensional Cell Matrix with square cells. Each square cell is connected to its four adjacent cells

as shown in Figure 1. In this baseline architecture, each side of every cell has a control input and a

control output (marked as C), a data input and a data output (marked as D). I will keep the

discussion sufficiently general and solutions sufficiently versatile that they still apply to more

complex architectures.

3



cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

cell

DN DNCN CN

DS DSCS CS

DE

DE

CE

CE

DW

DW

CW

CW

Figure 1. The four-connected Cell Matrix topology.

Cell Matrix Operation

All Cell Matrix functionality is accomplished by groups of cells without any centralized

control. 

D-Mode Operation  

Cells function as wires or logic gates when in data mode (or D-mode). 

A cell is in data mode when all its C inputs are 0. When in D mode, the cell uses its

internal truth table to produce D and C outputs based on D inputs.

C-Mode Operation  

In control mode (C mode), cells can be reprogrammed by adjacent cells to perform new

functions or can serve as data storage units. 

A cell enters C mode when one or more of its C inputs are set to one. When a C input is set
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to one, the D output on that side of the cell becomes active. The cell’s logic table acts as a FIFO

queue. At each clock cycle, the Boolean sum of active D inputs is pushed onto one side of the table,

the last bit of the truth table is popped out to the active D outputs, and the logic table shifts by one

bit. Inactive D inputs are ignored.

The functionality afforded by a cell’s C-mode sets the Cell Matrix apart from traditional

field-programmable gate arrays. Although simple in operation on the single-cell level, collectively,

Cell Matrix circuits can develop complex behavior such as obstacle avoidance, evolvable

hardware, efficient scheduling of computational resources, and so forth.

Characteristics of Cell Matrix Related to Placement and Routing

Although similar in concept to the compilation of other architectures, Cell Matrix circuit

compilation stands out in several important ways. The following sections describe properties of the

Cell Matrix that may affect the choice of the circuit compilation approach.

Homogeneity   

Cell Matrix components are not intrinsically differentiated. No superstructures exist for

cell programming, routing, or synchronization. The Cell Matrix does not by itself dictate a

direction for computation flow. It is symmetric and homogenous.

Non-differentiated Connectivity  

Modern FPGA architectures provide rich routing circuitry that is separate from logic

elements. This richness of routing circuitry affords separate algorithmic approaches for placement

and routing, avoiding the complexity of the iterative or interlaced placement and routing processes.

On the contrary, Cell Matrix components are used for both logic and connectivity, and the

distinction between placement and routing is less defined. In general, near-optimal placement and

routing can be only achieved in parallel or by iterating between the two processes.
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Scalability  

Thanks to its homogeneity, Cell Matrix is fully scalable. By increasing the size of the

matrix, the system designer can increase its computational power almost proportionally. This

property renders the partitioning step of the design process somewhat less critical.  If the hardware

compiler runs out of matrix resources, the designer has the option of simply extending the matrix.

Fault Tolerance  

Unlike most conventional FPGA architectures, Cell Matrix hardware can be used even if

many of its cells are faulty. Techniques are being developed to identify and map faulty cells

[Durbeck, L. and Macias, N. Defect-tolerant, fine-grained parallel testing of a Cell Matrix. SPIE

ITCom, Series 4867 (2002), 71-85. Ed Schewel, J., James-Roxby, P., Schmit, H., and McHenry].

Once faulty cells are identified, circuits must be routed differently for individual matrices. No one

precompiled layout will work for all matrices. 

Multiple Topologies  

Although only the two-dimensional square-cell four-connected topology is being

considered in this thesis (as shown in Figure 1), other conceptual topologies have been studied

[Macias, N. The PIG paradigm: The design and use of a massively parallel fine grained self-

reconfigurable infinitely scalable architecture. In Proceedings of The First NASA/DOD Workshop

on Evolvable Hardware, (1999), 175-80. Ed Stoica, A., Keymeulen D., Lohn J. ]. 

o Hexagonal six-connected cells constitute another natural choice for a planar topology. 

o 3D topologies with cubic, tetrahedral, and other cell shapes. Three-dimensional topologies

will yield a great increase of performance over 2D topologies as they pack greater

numbers of cells within smaller distances of each other.

o 2.5-dimensional circuits are defined as a set of parallel 2D matrices with sparse wires

connecting the two. The term “2.5-dimensional” is borrowed from the animation industry

but applies as well in hardware compilation [Ruben, S. Computer Aids for VLSI Design,

6



2nd edition, 1994. First printed as part of the Addison-Wesley VLSI Systems Series.

Addison-Wesley Publishing Company, 1987. Out of print, 1993. Copyright returned to

Steven M. Rubin. 1997. http://www.rulabinsky.com/cavd/].

These alternative topologies retain most of the basic Cell Matrix characteristics. The Cell Matrix

Compiler algorithm is designed to extend easily into these alternative topologies.

Terminology

Since the Cell Matrix has much in common with FPGAs, most FPGA terminology applies.

However, to avoid ambiguity in the inherently diverse terminology of circuit routing, I will use the

following definitions throughout this thesis.

Cell: A cell is the fundamental physical unit of Cell Matrix uniquely identified by its location on

the circuit.

Port: A port is a physical one-directional connection between two cells. Only D ports for data

mode operation are considered in the scope of this project. 

Gate: A gate is a logical unit without memory or internal loops with one or more inputs and/or one

or more outputs. Multiple gates may be placed on the same cell until the cell runs out of ports to

route the connected wires or feedback loops form within the cell.

Wire: A wire is a logical directed relation between gates. A wire logically associates a source gate

with a destination gate. 

Netlist: A netlist is a set of gates and wires connecting them.

Route: A route is a path through multiple gates and ports from the origin cell to the destination cell.

A route is associated with one and only one wire. No two valid routes can pass through the same

port, but multiple routes may cross a gate. A route does not take up any ports if its source and

destination gates are different and reside on the same cell.

Terminal: A terminal is a port that connects to the outside world. Input and output terminals are
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distinguished from each other.

Functional distance: The functional distance between two gates is the smallest number of wires

separating the two gates. The direction of wires is not considered.

Functional layer: The n-th functional layer for a gate G consists of all gates removed by exactly n

wires from G.

Functional neighborhood: The functional neighborhood of radius r comprises the first r functional

layers.

Functional neighbor: The functional neighbor of gate G is a gate that belongs to some functional

layer of G.

Manhattan distance: Also known as rectilinear distance, the Manhattan distance between two

points is defined as the sum of distances along each coordinate axis. 
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PREVIOUS WORK

The computational complexity of exhaustive placement algorithms is proportional to n! where n is

the number of modules to be placed. Thus the placement problem is NP-complete [Garey, M. and

Johnson, D. The rectilinear Steiner tree problem is NP-complete. SIAM Journal of Applied

Mathematics, 32 (1977) 826-834, Cai, H. Gridless Routing System for Macro-Cell Design. Delft

University of Technology, Delft, The Netherlands. Published in Zobrist, G. Routing, Placement,

and Partitioning, chapter 2. Alex Publishing Corporation, 1994.]. Despite this, a number of

approaches are used in commercial software to generate nearly optimal placement and routing in

polynomial time. Although significant research has been done on the subject of automated

hardware generation [Ruben, S. Computer Aids for VLSI Design, 2nd edition, 1994. First printed

as part of the Addison-Wesley VLSI Systems Series. Addison-Wesley Publishing Company, 1987.

Out of print, 1993. Copyright returned to Steven M. Rubin. 1997.

http://www.rulabinsky.com/cavd/.], implementations remain proprietary and their details

undisclosed. As such, they are not part of academic scholarship or discourse. Limited work has

been done on general placement and routing algorithms to generate circuits for arbitrary hardware

architectures [Betz, V. and Rose, J. VPR: A new packing, placement, and routing tool for FPGA

Research. In Proceedings of International Workshop on Field Programmable Logic and

Application, 1997]. Commercial hardware generation remains architecture-specific and

application-specific to take advantage of the strengths of the target system and to utilize proven

standard pre-routed blocks.

Placement algorithms in the literature fall into two categories: constructive (or opening) and

iterative (or improving). Because of the high computational complexity of the placement and

routing problem, constructive algorithms are typically feasible only for small or well-understood

and regular circuits. Furthermore, constructive algorithms typically require global planning and
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centralized processing, while iterative algorithms achieve similar goals using local information

only. Minimal global communication makes iterative algorithms more suitable for parallel

implementation. 

Limited global communication better suits a future Cell Matrix implementation of the Cell Matrix

Compiler. This Cell Matrix module would program a neighboring Cell Matrix according to a

schematic design provided as input.

For these reasons, this overview is limited to iterative placement and routing algorithms.

Automated Placement Algorithms

Simulated Annealing  

Simulated annealing [Cai, H. Gridless Routing System for Macro-Cell Design. Delft University of

Technology, Delft, The Netherlands. Published in Zobrist, G. Routing, Placement, and Partitioning,

chapter 2. Alex Publishing Corporation, 1994., Zhang, C. VLSI Placement, Institute of Theoretical

Electrical Engineering, Unversity Karlsruhe, Kralsruhe, Germany. Published in Zobrist, G.

Routing, Placement, and Partitioning, chapter 4. Alex Publishing Corporation, 1994] is a general-

purpose optimization technique well-suited for the placement problem. An initial placement is

generated either randomly or by a primitive constructive placement algorithm. Thereafter,

simulated annealing iterations are performed. At each iteration, new gate locations are chosen

randomly. A quality function is used to evaluate q∆  � the improvement in placement quality of a

gate. The gate is relocated to the new cell with probability ( )exp /p q T= ∆ , where T is the global �

temperature.� Gates always move toward improved placement, but the higher the temperature, the

higher the probability of relocating into lower-quality placements. The algorithm starts with a high

value of T, which prevents the algorithm from getting trapped in local minima. Over time, the �
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temperature� is lowered and the algorithm converges on a local minimum. If the cooling schedule

is gradual enough, the algorithm is likely to converge very close to the optimum solution. 

Zhang in [Zhang, C. VLSI Placement, Institute of Theoretical Electrical Engineering, Unversity

Karlsruhe, Kralsruhe, Germany. Published in Zobrist, G. Routing, Placement, and Partitioning,

chapter 4. Alex Publishing Corporation, 1994] points out that, although variations of the simulated

annealing algorithm have enjoyed a wide acceptance in placement and routing, their convergence

rates are generally slow. 

Because in Cell Matrix compilation placement and routing are inseparable, both have to be

performed simultaneously further slowing the convergence rates.

Energy Minimization and Force-directed Methods  

Energy-minimization and force-directed methods [Zhang, C. VLSI Placement, Institute of

Theoretical Electrical Engineering, Unversity Karlsruhe, Kralsruhe, Germany. Published in

Zobrist, G. Routing, Placement, and Partitioning, chapter 4. Alex Publishing Corporation, 1994]

apply an attracting force between connected gates and repelling forces between all other gates.

This is a very straightforward and fast algorithm; however, it lacks the exploratory properties of the

simulated annealing algorithm, quickly settling in a local optimum.

Neural Network Routers or Self-Organizing Maps  

Neural network placement algorithms (sometimes described as self-organizing maps) [Ritter, H.

and Shulten, K. Kohonen’s self-organizing maps: Exploring their computational capabilities. In

Proceedings of the IEEE International Conference on Neural Networks (1988), 109-116] represent

gates as neurons. Each neuron�s weight value is a vector specifying the gate�s placement. �

Excitations� take place at random cells in the placement space. A gate physically closest to the

excitation site becomes active. The excitation then propagates from the active gate to its functional

neighbors, decreasing in strength with functional distance from the active gate. Each excited gate�

s position is adjusted toward the original excitation point proportionally to the remaining excitation
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strength and the capacity of the excited cell to host the excited gate. Fractional adjustments may

accrue until they result in moving gates into new discrete positions. Figure 2 illustrates an iteration

of this process. 

excitation

active gate

1st-layer
excited gate

(strongly attracted
toward excitation)

2nd-layer
excited gate

(reduced attraction)

Figure 2. Mapping adjustment iteration.

The two main factors that dictate the convergent behavior of the algorithm are the excitation

distribution function and the functional layer function. 

The excitation distribution function determines how the next excitation is selected. At early stages

of the placement process, the excitation distribution function is uniformly distributed over the

available chip area. As the placement convergence, the excitation distribution function is generated

to be more densely occupied cells, producing more compact placements.

The functional layer function determines how excitations diminish in strength as they propagate

away from the active gate. Typically, an exponentially decaying function is used. Fast decay rates

work well early in the placement process (macroplacement), and fast decay rates are used late in

the placement process (microplacement and optimization).

Steinberg Algorithm  

The Steinberg algorithm [Steinberg, L. The backboard wiring problem: A placement algorithm.

SIAM Review, 3 (1961) 37-50., Chen, W. and Wang, K. Placement. Department of Electrical
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Engineering and Computer Science, University of Illinois at Chicago. Published in Zobrist, G.

Routing, Placement, and Partitioning, chapter 5. Alex Publishing Corporation, 1994., Brixius, N.

and Anstreicher, K. The Steinberg Wiring Problem. University of Iowa] is a powerful technique

that quickly improves an existing placement. First, a set of gates is generated in which no gate is

connected to any other gate in the set. To produce such a set, the algorithm starts out with a random

gate and then keeps adding gates that are not connected to the gates already in the set. This is done

without worrying much about the yet unplaced gates. Next, these gates are unplaced and then

placed optimally in relation to their placed functional neighbors. Finally, a new independent set is

generated, and the process is repeated. The Steinberg algorithm converts the placement

optimization problem from a combinatorial NP-complete problem into iterations of O(n) problems,

each improving the placement quality.

Selection Criteria

The listed algorithms are not all mutually exclusive. A successful solution may involve a

combination of these algorithms executed sequentially or iteratively. For example, my

experimentation suggests that the effectiveness of simulated annealing can be greatly increased by

interspersing its iterations with iterations of the Steinberg algorithm.

To select a combination of algorithms for placement and routing of Cell Matrix circuits, I evaluated

how effectively they addressed a set of intermediate goals that I found to be essential for a

successful Cell Matrix compiler. This section describes these intermediate goals.

Moving Connected Gates Close to Each Other  

The algorithm must quickly and effectively move connected cells close to each other. This

minimizes the total wire length and the number of Cell Matrix cells dedicated to routing.

Distributing Gates Through Available Chip Area  

To route a group of gates, it becomes necessary to spread them more sparsely to free cells between
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gates for routing. Unused portions of the chip may have to be found and utilized. Some algorithms

(e.g. energy minimization methods, force-directed methods, Steinberg�s algorithm) do not attempt

to spread gates apart and, if left to their own devices, will result in a tight knot of gates and wires in

a small area. Other algorithms (e.g simulated annealing, neural networks) are very effective at

exploring all available chip area.

Tightening Near-Optimal Placements   

An algorithm may not take advantage of �trivial� and inexpensive placement adjustments. For

example, nudging the placement of a gate by one cell may reduce its routing demands.  Simulated

annealing in its conventional implementation does not �see� such trivial adjustments, while force-

directed methods immediately find them all.

Obstacle Avoidance  

The complex geometry of a chip or the presence of faulty cells must not degrade the effectiveness

of placement. A force-directed method, for example, may continually pull gates into dead-end areas

where routing is hampered by obstacles.

Escaping from Local Optima   

A placement algorithm must not give up seeking better solutions when a good solution is found. It

may be necessary to �move uphill� or, in other words, reduce the quality of the placement

temporarily while in search of the global optimum. As an example, simulated annealing algorithms

are very effective at avoiding local optima when the temperature is high.

Avoiding Deadlocks  

To optimize the placement of a single gate, it often becomes necessary to displace multiple gates.

As a worst-case scenario, consider a placement in which no more free cells are available. A

simulated annealing algorithm that moves one gate at a time would seize up without having free

cells to perform the next step. The Steinberg algorithm, for example, deals very effectively with

such deadlocks. 

14



Summary of Existing Placement Techniques when Applied to the Cell Matrix

Table 2 summarizes the strengths and weakness of each approach, based on my experimentation

and literature review. ‘H’ means high effectiveness, ‘M’ means medium effectiveness, and ‘L’ low.

Table 2. Summary of placement techniques when applied to the Cell Matrix.
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This analysis predicts, for example, that a combination of iterations of the simulated annealing

algorithm with iterations of the Steinberg algorithm or a forced-directed method is likely to result

in a robust algorithm. The Cell Matrix compiler combines a variation of the neural network

placement algorithm (or self-organizing map) with a force-directed method, which, according to

this analysis, is also a strong symbiosis. 

Automated Routing Algorithms

Lee-Moore Maze Routing  

The routing problem can be described as a minimal spanning tree problem, for which Dijkstra’s

minimal spanning tree algorithm is an effective and well-known solution.  When applied to maze

routing, Dijkstra’s minimal spanning tree algorithm is known as the Lee-Moore algorithm [Moore,

E.F. Shortest Path Through a Maze. Harvard University Press (1959), 285-292, Lee, C. Y. An

algorithm for path connections and its applications. IRE Transactions on Electronic Computers,

EC-10 (1961), 346-365]. This algorithm works by propagating a concentric wave around the origin

cell. The wave circumvents unavailable or faulty cells. When the destination cell is reached, the

shortest path is traced back through the successive steps of the wave. The algorithm is so common

and straightforward that hardware implementations have been developed [Blank, T. A survey of

hardware accelerators used in computer-aided design. IEEE Design and Test, 1, 3 (1984) 21-39.]. 

The Lee-Moore algorithm guarantees finding the shortest path. It straightforwardly extends into

various connectivity schemes and higher dimensions.

Maze Walking  

A downside of the Lee-Moore algorithm is its unacceptably slow execution and large memory

requirements on large topologies, particularly in three-dimensional architectures. Some authors

[Ruben, S. Computer Aids for VLSI Design, 2nd edition, 1994. First printed as part of the Addison-

Wesley VLSI Systems Series. Addison-Wesley Publishing Company, 1987. Out of print, 1993.
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Copyright returned to Steven M. Rubin. 1997. http://www.rulabinsky.com/cavd/, Hightower, D. A

solution to line-routing problems in the continuous plane. In Proceedings of the 6th Design

Automation Workshop (1969), 1-24.] suggest using maze-solving algorithms (e.g. line search

routing) that walk toward the destination and circumvent obstacles by walking along their walls.

However, these algorithms do not necessarily find the shortest path and may not be directly

extendable into higher dimensions and more complex architectures. 

A* Maze Routing   

If the Lee-Moore algorithm is a breadth-first algorithm (slow but sure) and maze-walking

algorithms are depth-first (fast but suboptimal), then the field of artificial intelligence suggests that

the A* algorithm has the advantages of both approaches: fast but still guaranteeing the best solution

[Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd edition

(2002).]. Although the A* algorithm is known as a good solution to the general shortest path and

navigation problems, I was surprised not to find it cited in the placement and routing literature.

The Cell Matrix Compiler uses a variation of this algorithm to quickly find the shortest route. A

more detailed description of the algorithm is given later in the paper.
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CELL MATRIX COMPILATION

The Circuit Design Process

Figure 3 depicts the circuit design process proposed in this thesis. The two steps performed

manually by the circuit designer are schematic entry and matrix resource specification. The step

numbers in italic correspond to the steps in the existing Cell Matrix development process outlined

in Table 1. The Cell Matrix Compiler automates the steps in the gray box.  

Matrix Resource
Specification.

Step 3.

Cell Matrix
Compilation and

Loading.
Steps 7-8.

- pre-placement
- macro placement
- micro placement
- routing
- optimization
- output

Schematic Entry.
Steps 1-2. Automatic

Placement
and Routing

Automated by the
Cell Matrix Compiler

Parsing &
Normalization

Steps 4-6.

Automated
previously

Figure 3. Proposed Cell Matrix circuit development process.
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Schematic Entry  

With the introduction of the Cell Matrix compiler, Cell Matrix designers have the option of using a

standard schematic entry software package to specify the schematic design to be implemented. For

this thesis I developed a library of logic elements in Orcad Splice schematic entry software. 

Figure 4 depicts a simple circuit specified with the use of this library. Schematic entry tools then

save the schematic design as a netlist in a hardware definition language. The Cell Matrix Compiler

uses VHDL, but others can be used as well. Users may choose to bypass schematic entry and

develop circuits directly in VHDL or another hardware definition language. 

Figure 4. A four-bit adder circuit entered using the Cell Matrix element library in Orcad.
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Not all legal netlists or schematic designs are legal inputs to the Cell Matrix compiler. To be routed

successfully by the Cell Matrix Compiler, a netlist must comply with the following set of

constraints:

1) All gates must be simple enough to be hosted on a single cell. More complex components

must be decomposed into their elementary gates. This constraint applies when new

elements are added to the Cell Matrix Library.

2) No wire may remain dangling. Terminal wires must be connected to designated input or

output terminal gates.

3) No pin may remain disconnected. 

Matrix Resource Specification  

Matrix Resource Specification consists of specifying the following items:

1) Cell Matrix geometry

2) Map of faulty cells

3) Seed placements (manual placement of input and output terminals or other gates)

Parsing and Normalization  

The parser reads the VHDL specification of the circuit. Normalization is the process that ensures

that each wire connects one and only one output pin to one and only one input pin. Wire splits are

replaced with special “split” gates. Although wires merges do not make sense in the Cell Matrix

architecture, VHDL allows them, and I made the program replace them with special “merge” gates.

Figure 5 depicts the routing of the circuit specified in Figure 4 as generated by the algorithm.

Notice the absence of wire splits or merges – they are replaced with auxiliary gates. Also notice

that multiple gates are sometimes hosted on the same cell. Unless loops form inside a cell, such cell

sharing is valid and efficient and arises commonly in optimized circuits. The black cells are

defective and are not used for placement and routing. In the figure, the input terminal gates are

positioned along the left edge of the chip, and the output terminal gates are positioned along the
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right edge.

Figure 5. The netlist from the circuit in Figure 4 placed and routed by the placement algorithm on
a 12x14 Cell Matrix with 7% defective cell rate. After normalization, the netlist has 46 wires and
no wire splits. 

General Approach: Interlaced Placement and Routing

Due to the non-differentiated connectivity of the Cell Matrix architecture, its logic blocks and

wiring compete for the same hardware resources. This competition is less severe in conventional

FPGA architectures in which dedicated routing structures connect logic elements. An interesting

dilemma arises from this property of the Cell Matrix. Should routing be performed through

iterations of the placement algorithm or should it be performed after the gate placement is

completed? On the one hand, the validity or quality of the gate placement cannot be accurately

estimated until the routing is performed, so gate placement is not complete until the routing is

ensured. On the other hand, complete routing at each iteration of the placement algorithm will
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result in a prohibitive increase in the computational complexity of gate placement.  

I have identified the following three approaches to address this dilemma.

1. Attempt to route all wires at the end of each iteration of the placement algorithm.

This increases the complexity of the placement algorithm, but enables the

placement algorithm to allocate sufficient and not excessive number of cells for

wire routing.

2. Use sophisticated heuristics to allocate enough space around placed gates for

future routing. It is almost certain, however, that such heuristics will waste Cell

Matrix resources by allocating excessive space for wire routing or will not

guarantee successful routing at the end of the placement phase.

3. Start with minimal routing rates and gradually increase the routing rate as the

placement algorithm converges. A simple heuristic predicts the placement quality

for unrouted gates.

The third approach combines the placement efficiency of the first approach with the computational

efficiency of the second approach. This reasoning led me to develop an iterative algorithm that

gradually blends wire routing into gate placement as the placement converges. 

At each iteration, all gates follow a set of simple rules. Small adjustments in behavioral

propensities of individual cells result in drastic changes of their collective behavior. A single

algorithm performs all stages of the placement and routing process with only parameter values

changing. To estimate the placement quality of unrouted gates, I introduced a neighborhood quality

map, which is described later in the paper.
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Core algorithm of the Cell Matrix Compiler  

Table 3 summarizes the rules applied to each gate at every iteration throughout the execution of the

algorithm. The rules are parameterized in order to optimally blend placement and routing as the

algorithm goes through compilation stages.

Table 3. Cell Matrix compiler iteration

9. With probability P1, the gate attempts to route wires connected to it.

10. The gate evaluates its ‘comfort’ based on the lengths of all routed
wires or the Manhattan distance to unrouted functional neighbors.

11. The gate evaluates its ‘happiness’ based on its current ‘comfort’,
its past ‘happiness’, and the minimal comfort of its functional
neighbors. The latter two criteria are controlled by the
forgetfulness and empathy parameters.

12. If the gate is amongst P2 portion of the unhappiest gates globally,
it unroutes all its connected wires.

13. If the gate is completely unrouted, i.e. none of its wires are routed,
it becomes available for a placement adjustment. Placement
adjustments are performed by an iteration of a neural network
placement algorithm. 

14. If the gate is routed, then, with probability P3, check whether one
of the adjacent cells allows for shorter wire routing and, if so,
move the gate to that cell.
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Compilation Stages  

A typical placement and routing algorithm comprises the following stages:

1. Macroplacement or Partitioning. During macroplacement, the general chip structure is

established. Functionally connected groups of gates are placed in physical chip areas.

Partitioning is a stricter form of macroplacement, in which groups of gates are

permanently assigned to physical chip areas or separate chips and cannot migrate to other

areas during later routing stages.

2. Microplacement. Detailed placement. Individual gates are assigned to specific cells. 

3. Routing. Routes are found for each wire. 

4. Optimization (compaction). The placement and routing is optimized for chip area and wire

length without disrupting wire routing.

Most routers employ separate algorithms for each stage. An advantage of the Cell Matrix compiler

algorithm is that a single algorithm implements all four of these stages. By simply modifying the

control parameters P1, P2, P3, forgetfulness, and empathy in the described rules, the emergent

behavior undergoes a qualitative transformation. 

The Cell Matrix Compiler algorithm moves to the next stage when a set percentage of wires is

routed and a set mean wire length is reached. These two conditions constitute the stage transition

criterion. In the new stage, new algorithm control parameter values and transition criterion values

are assumed. 

A set of algorithm stages with corresponding control parameter values and stage transition criteria

constitute the algorithm schedule. The effectiveness of the overall algorithm is based on the

algorithm schedule. The generation of the algorithm schedule is intuitive but difficult to optimize

precisely.  
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Through extensive experimentation, I found that the algorithm schedule in Table 4 consistently

yielded fast placement and routing of netlists with complexity levels varying from a few gates to

thousands of gates.

Table 4. Algorithm schedule.

Algorithm
Parameters
and Stage
Transition
Criteria

Valid
Range

Algorithm Stages

“Pre-
placement

”

“Macro-
placement

”

“Micro-
placement

”

“Routing
”

“Optimiza
tion”

P1 0.0 – 1.0 0.25 1.0 1.0 1.0 1.0

P2 0.0 – 1.0 0.1 0.4 0.2 0.1 0.5

P3 0.0 – 1.0 1.0 0.1 0.2 0.3 1.0

forgetfulness 0.0 – 1.0 0.9 0.5 0.2 0.2 0.2

empathy 0.0 – 1.0 0.1 0.5 0.5 0.5 0.2

% routing
required to
advance to
next stage

0 – 100 60 84 90 97 100

Mean wire
length
required to
advance to
next stage

Based
on user’s
desired
degree

of
optimiz

ation

99 50 50 50

Dependen
t on size

and
complexit

y

25



26



Position Adjustment  

Following the analysis of existing placement algorithms captured in Table 2 and

characteristics of the Cell Matrix, I chose to combine a variation of the neural network algorithm in

[Ritter, H. and Shulten, K. Kohonen’s self-organizing maps: Exploring their computational

capabilities. In Proceedings of the IEEE International Conference on Neural Networks (1988), 109-

116.] with an energy minimization method to solve the placement portion of the compilation

problem. The neural network algorithm performs the position adjustment of unrouted gates and the

energy minimization algorithm optimizes the positions of routed gates.

In position adjustment algorithm, a cell on the chip is “excited.” The gate closest to the

excitation becomes the active gate. The functional neighbors of the gate are then moved toward the

excitation (not toward the active gate) in proportion to the excited cell’s available capacity. This

approach forces cells to spread into underutilized portions of the matrix while also moving

functional neighbors into physical proximity. 

The convergence rate of the algorithm improved significantly when I added a

“neighborhood quality” map. The neighborhood quality map helps determine the likelihood of

routability of a gate should it be placed in a particular cell. This estimate is based on recent routing

history in the neighborhood of the cell. When a gate moves toward an excited cell, it will prefer a

place that does not have a recent history of unrouted wires or excessive wire traffic. Anytime a gate

cannot route its wires, it updates the quality of its cell to a very low value. With each iteration, the

neighborhood quality map gets convolved with a smoothing kernel and is normalized to keep the

mean neighborhood quality constant. Thus, with time, the quality metric of a neighborhood decays

in intensity and diffuses in space. 
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Wire Routing

A* Approach  

For wire routing, the Cell Matrix compiler incorporates an A* maze routing algorithm. The

algorithm is proven [Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach.

Prentice Hall, 2nd edition (2002).] to possess the properties of completeness and optimality. This

means that it guarantees the best solution while consistently visiting significantly fewer cells than

breadth-first algorithms such as the Lee-Moore maze router. 

The algorithm stores all paths that may lead to an optimal solution but preferentially visits

cells that lead toward the destination cell, as determined by the Manhattan distance metric. When

obstacles force the currently pursued route out of the direct path toward the destination, the

algorithm begins pursuing other solutions. The A* algorithm realizes this decision process in an

elegant and succinct manner.

Sample Execution  

Figure 6 compares a sample run of the conventional Lee-Moore maze algorithm (a) and the

A* maze algorithm (b). 

9 8 7 8 9

8 7 6 7 8 9

7 6 5 6 7 8 9

6 5 4 5 6 7 8 D
5 4 3 4 5 6 7 8 9

4 3 2 3 4 5 9

3 2 1 2 3 4 5 6 7 8 9

2 1 S 1 2 3 4 5 6 7 8 9

3 2 1 2 3 4 5 6 7 8 9

4 3 2 3 4 5 6 7 8 9

5 4 3 4 5 6 7 8 9

7 5 4 5 6 7 8 9

(a)         

7 8 D
7 6 7 8

6 5

1 2 3 4 5 6 7

1 S 1 2 3 4 5 6

1 2 3 4 5 6

(b)
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Figure 6. Sample execution results of the Lee-Moore
router (a) and the A* router (b). ‘S’ marks the source
cell. ‘D’ marks the destination cell. The dark cells are
faulty. Cells that have been visited by the algorithms
are marked with numbers indicating the number of
cells traversed since the source cell.
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Algorithm Listing  

The following is the A* maze routing algorithm in its entirety: 

function find_route( cells, steps, destination )

current_cell  pop_top( cells )

if current_cell = Ø then return Ø    // no route exists

new_cells  neighbor_cells( current_cell )

compute_cost( new_cells, steps )

cells  [ cells, better_than( new_cells, current_cell ) ]

if destination is in new_cells 

then 

return [ destination ]

else 

return [current_cell,find_route( sort_by_cost(cells), destination,

steps+1)]

end

Invocation   

To invoke the function, the cost values of all cells in the Cell Matrix are cleared (initialized

to null) and the find_route function is invoked as follows:

route  find_route( [ source_cell ], 0, destination_cell )

Upon completion, the route variable will contain an ordered list of cells connecting the

source_cell and the destination_cell, or Ø if no route exists between the two cells.

Obstacle Avoidance  

Obstacle avoidance is accomplished by the neighbor_cells( cell ) function, which returns

all cells accessible from the given cell, even if they have already been visited. Cells are inaccessible

if they are faulty or if the ports connecting them to the given cell are already in use. Note that cell
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A may be accessible from cell B while cell B is not accessible from cell A because connections

between cells are directional.

The cost function  

The compute_cost( cell ) routine associates the cell with a cost value computed as:

cost( cell )  min( cost( cell ),  Manhattan( cell, destination )·L + steps · ( L-1 ) )

where Manhattan( cell, destination) is the Manhattan distance between the cell and the

destination and L is a very large number.

If the cell already has a cost value associated with it, it is replaced when the new cost value

is smaller.

The better_than( cells, cell ) function returns the subset of cells for which the cost value is

lower than that of cell.

Functions sort_by_cost( cells ) and pop_top( cells ) work together to find the cell with the

lowest cost value, remove it from cells, and use it in the current recursion of the algorithm.

Routing Interactions  

Another challenge in wire routing is caused by the fact that each wire is routed without

consideration for other wires. The Cell Matrix compiler resolves this problem by repetitive ordered

rerouting. The wires connecting “happiest” gates are routed first or remain routed. An additional

improvement in routing rates is achieved when the wires in the most congested areas are routed

first, as suggested by Hightower in [Hightower, D. A solution to line-routing problems in the

continuous plane. In Proceedings of the 6th Design Automation Workshop (1969), 1-24.].

Parallels with Existing Placement and Routing Algorithms

At various values of the algorithm parameters, the placement algorithm described here

results in global behaviors similar to conventional placement and routing algorithms. An advantage

of the Cell Matrix compiler algorithm is its flexibility and versatility. With its parameters adjusted,
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the algorithm can perform similarly to simulated annealing, self-organizing maps, and energy-

minimization methods taken separately.

Parallels with Simulated Annealing  

The role of the happiness value is similar in function to the temperature value in the

simulated annealing placement algorithm [Zhang, C. VLSI Placement, Institute of Theoretical

Electrical Engineering, Unversity Karlsruhe, Kralsruhe, Germany. Published in Zobrist, G.

Routing, Placement, and Partitioning, chapter 4. Alex Publishing Corporation, 1994]. The fact that

‘happiness’ is localized makes the algorithm dedicate its computational resources to the poorly

placed gates. It also makes the algorithm susceptible to getting trapped in local minima when

clusters of well-placed gates resist change. This problem is addressed by the concept of “empathy.”

The happiness of a cell becomes limited by the comfort of its neighbors. When the empathy

coefficient is high, the inability of some gates to be placed and routed translates into the relative

agility of the entire population, beginning with the immediate functional neighborhood. In this

state, the algorithm closely resembles simulated annealing with good macroplacement

performance.

Parallels with Neural Networks and Self-Organizing Maps  

My early tests showed the Cell Matrix complier algorithm’s incredible ability to untangle

large netlists in a minimal number of iterations. I chose a uniform excitation distribution function,

which resulted in excitations to be equally likely to happen in all available placement space. I used

an exponentially decreasing layer function similar to [Ritter, H. and Shulten, K. Kohonen’s self-

organizing maps: Exploring their computational capabilities. In Proceedings of the IEEE

International Conference on Neural Networks (1988), 109-116.]. Step 5 in Table 3 implements an

idea very similar to the neural network algorithm described by Ritter [Ritter, H. and Shulten, K.

Kohonen’s self-organizing maps: Exploring their computational capabilities. In Proceedings of the

IEEE International Conference on Neural Networks (1988), 109-116].
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Parallels with Energy Minimization and Force-directed Methods  

To compensate for the neural network algorithm’s poor convergence to a local minimum,

combining it with an energy minimization method proved very effective. Step 6 in Table 3

implements a variation of the energy minimization method. When a gate is fully routed, it explores,

without disturbing the routing, whether one of the gate’s adjacent cells allows for a more efficient

routing. This process brings little benefit early in the placement process since the gate is likely to

be relocated, so the value of P3 approaches 100 percent in the optimization stage. The value of P3  is

set high in the pre-placement stage to optimize the positions of key gates serving as the skeleton for

the rest of the placement.

Results

Validation  

I used two distinct processes to validate and verify the performance of the Cell Matrix

Compiler. The validation process was accomplished by going through the entire process of Cell

Matrix design as depicted in Figure 3. Circuits were entered through the schematic capture tool,

compiled by the Cell Matrix Compiler, and loaded into the Cell Matrix simulator. Then the

circuits’ functionality was tested in the Cell Matrix Simulator by verifying that they returned

correct output for given input. Nick Macias and Lisa Durbeck of Cell Matrix Corporation also

conducted a series of such tests using realistic useful circuit specifications. The circuit in Figure 4

and Figure 5 is an example of such a test.

The validation tests confirmed that, the Cell Matrix Compiler always generated valid

layouts. In those cases when complete wire routing was not achieved, the Cell Matrix Compiler did

not generate a layout.

Verification  

The purpose of the verification process was to measure the success rate of Cell Matrix
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compilation with a wide variety of input netlists and available circuit areas. For greater control of

the netlist complexity, I developed a synthetic netlist generator, which produced netlists with an

arbitrary number of elements connected randomly so that each gate was connected to two or three

other gates.

Through experimentation, I found several schedules resulting in fast and efficient

placement and routing of a wide variety of circuit sizes (up to 2000 gates). 

Figure 7 illustrates the routing iterations of a 100-gate synthetic circuit with 230 wires on a

30x30 Cell Matrix with a 3 percent bad cell rate using the schedule in Table 4.  plots the percentage

of routed wires as a function of iteration number averaged over ten runs, with netlists and bad cell

maps of similar complexities generated randomly for each run. All runs but two completed within

the 120-iteration limit. The unsuccessful compilations suffered from premature stage transitions

and would have taken a longer time to converge. To solve the problem, either more chip space must

be allocated (and then returned if made available after optimization) or the compilation must be

repeated with a different random number generator seed.
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a)                                                                                   b)

                 

c)d)

Figure 7. Routing of a 100-gate 230-wire netlist on a
30x30 Cell Matrix with 3% bad cell rate. The dashed
lines indicated unrouted wires. In (a), (b), and (c), the
shades of gray indicate the neighborhood quality.
Darker areas denote less desirable placement
candidates. After three iterations (a), 48% of wires
are routed. After 25 iterations (b), 91% of wires are
routed. After 58 iterations (c), a first complete routing
is achieved with the mean wire length of 10.4 After
90 iterations, the routing objectives are achieved. The
mean wire length is 7.9 cells.
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Percentage of wires routed 
(30x30 cells, 3% bad cell rate, 100 gates, 230 wires) 
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Figure 8. Percentage of wires routed successfully at
each iteration. The error bars indicate the best and the
worst cases, starting with ten random 100-gate netlists
and defective cell positions on a 30x30 Cell Matrix.

Success Rate  

A serious challenge for the Cell Matrix Compiler and other hardware compilers is the

difficulty of predicting success in the general case. Various heuristics may be developed to predict

whether the allocated chip area can accommodate a given schematic. However, the presence of
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defective cells, complex matrix geometry, the degree of netlist connectivity, and the positions of

terminal gates make this an intractable problem. A possible solution is to provide abundant chip

resources, and let the compiler route and optimize the netlist. When the optimization is complete,

the unutilized chip area can be reallocated for other use. In any case, a degree of user supervision

may be required.

Another weakness of the Cell Matrix Compiler arises from premature stage transitions. In

this case, suboptimal algorithm settings may result in unusually low convergence rates. This

becomes a problem when the allocated Cell Matrix area approaches the minimal area sufficient for

the implementation of the design. For example, if the general macroplacement is not optimal and

microplacement is triggered, the adjustments of positions of groups of cells may take a longer time

when the algorithm is performing the optimization of individual cells’ placements

(microplacement). The developer may greatly increase the effectiveness of the algorithm by

detecting such premature transitions and adjusting the stage transition parameters. 
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FUTURE WORK

Parallel Implementation

Developing a parallel version of the Cell Matrix Compiler is a possible next step. The

current Cell Matrix Compiler implements a highly parallelizable algorithm. Implemented in a

parallel framework, its efficiency would increase almost proportionally to the number of processors

dedicated to the problem until the number of processors approached the number of gates to be

placed. 

Self-Routing Cell Matrix

A more intriguing and perhaps highly challenging task, however, is to implement a self-

routing Cell Matrix module, that is a Cell Matrix that will program itself according to logic design

specification. Although this task is mentioned in this thesis, the problem is not addressed directly

and extensive development may be required.

Extending into Alternative Topologies

This thesis outlines the implementation of a placement and routing algorithm for a single

Cell Matrix topology in such a way that extending it to other Cell Matrix architectures proposed by

Macias in [Macias, N. The PIG paradigm: The design and use of a massively parallel fine grained

self-reconfigurable infinitely scalable architecture. In Proceedings of The First NASA/DOD

Workshop on Evolvable Hardware, (1999), 175-80. Ed Stoica, A., Keymeulen D., Lohn J. ] is

conceptually straightforward. Thus, extending the algorithm to work with 6-connected hexagonal

two-dimensional cells or 8-connected cubic three-dimensional cells may be another future project. 

Control Mode Specification and Compilation

In control mode (C mode), Cell Matrix elements reprogram each other. This functionality
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is new in Cell Matrix and is not supported by conventional logic design and schematic entry tools.

A future project could develop symbolic or graphical representation of self-configurable logic and

extend the Cell Matrix compiler to accept and process this new notation.
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